Human-Centred Technology Research Centre, Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia.
Department of Computer and Software Engineering, National University of Sciences and Technology, Islamabad 44000, ICT, Pakistan.
Sensors (Basel). 2024 Oct 10;24(20):6508. doi: 10.3390/s24206508.
Schizophrenia (SZ) is a severe mental disorder characterised by disruptions in cognition, behaviour, and perception, significantly impacting an individual's life. Traditional SZ diagnosis methods are labour-intensive and prone to errors. This study presents an innovative automated approach for detecting SZ acquired through electroencephalogram (EEG) sensor signals, aiming to improve diagnostic efficiency and accuracy. We utilised Fast Independent Component Analysis to remove artefacts from raw EEG sensor data. A novel Automated Log Energy-based Empirical Wavelet Reconstruction (ALEEWR) technique was introduced to reconstruct decomposed modes based on their variability, ensuring effective extraction of meaningful EEG signatures. Cepstral-based features-cepstral activity, cepstral mobility, and cepstral complexity-were used to capture the power, rate of change, and irregularity of the cepstrum of preprocessed EEG signals. ANOVA-based feature selection was applied to refine these features before classification using the K-Nearest Neighbour (KNN) algorithm. Our approach achieved an exceptional accuracy of 99.4%, significantly surpassing previous methods. The proposed ALEEWR and cepstral analysis demonstrated high precision, sensitivity, and specificity in the automated diagnosis of schizophrenia. This study introduces a highly accurate and efficient method for SZ detection using EEG technology. The proposed techniques offer significant improvements in diagnostic accuracy, with potential implications for enhancing SZ diagnosis and patient care through automated systems.
精神分裂症(SZ)是一种严重的精神障碍,其特征是认知、行为和感知的中断,严重影响个体的生活。传统的 SZ 诊断方法既繁琐又容易出错。本研究提出了一种通过脑电图(EEG)传感器信号检测 SZ 的创新自动化方法,旨在提高诊断效率和准确性。我们利用快速独立成分分析(Fast Independent Component Analysis)从原始 EEG 传感器数据中去除伪影。引入了一种新颖的基于自动对数能量的经验小波重建(Automated Log Energy-based Empirical Wavelet Reconstruction,ALEEWR)技术,根据其可变性对分解模式进行重建,以确保有效地提取有意义的 EEG 特征。基于倒谱的特征-倒谱活动性、倒谱移动性和倒谱复杂度-用于捕获预处理 EEG 信号的倒谱的功率、变化率和不规则性。基于方差分析(ANOVA)的特征选择用于在使用 K-最近邻(K-Nearest Neighbour,KNN)算法进行分类之前精炼这些特征。我们的方法实现了 99.4%的卓越准确性,明显优于先前的方法。所提出的 ALEEWR 和倒谱分析在精神分裂症的自动诊断中表现出了高精度、高灵敏度和高特异性。本研究提出了一种使用 EEG 技术进行 SZ 检测的高度准确和高效的方法。所提出的技术在诊断准确性方面有显著的提升,这可能会通过自动化系统提高 SZ 的诊断和患者护理水平。