Suppr超能文献

一种使用傅里叶变换红外光谱和非线性支持向量回归进行丙戊酸治疗药物监测的新方法。

A Novel Approach for Therapeutic Drug Monitoring of Valproic Acid Using FT-IR Spectroscopy and Nonlinear Support Vector Regression.

机构信息

University of Sultan Moulay Slimane, Faculty of Sciences and Techniques, Beni Mellal 23000, Morocco.

Abulcasis University, Department of Pharmacy, Rabat 10000, Morocco.

出版信息

J AOAC Int. 2023 Jul 17;106(4):1070-1076. doi: 10.1093/jaoacint/qsac146.

Abstract

BACKGROUND

Recent technological progress has bolstered efforts to bring personalized medicine from theory into clinical practice. However, progress in areas such as therapeutic drug monitoring (TDM) has remained somewhat stagnant. In drugs with well-known dose-response relationships, TDM can enhance patient outcomes and reduce health care costs. Traditional monitoring methods such as chromatography-based or immunoassay techniques are limited by their higher costs and slow turnaround times, making them unsuitable for real-time or onsite analysis.

OBJECTIVE

In this work, we propose the use of a fast, direct, and simple approach using Fourier transform infrared spectroscopy (FT-IR) combined with chemometric techniques for the therapeutic monitoring of valproic acid (VPA).

METHOD

In this context, a database of FT-IR spectra was constructed from human plasma samples containing various concentrations of VPA; these samples were characterized by the reference method (immunoassay technique) to determine the VPA contents. The FT-IR spectra were processed by two chemometric regression methods: partial least-squares regression (PLS) and support vector regression (SVR).

RESULTS

The results provide good evidence for the effectiveness of the combination of FT-IR spectroscopy and SVR modeling for estimating VPA in human plasma. SVR models showed better predictive abilities than PLS models in terms of root-mean-square error of calibration and prediction RMSEC, RMSEP, R2Cal, R2Pred, and residual predictive deviation (RPD).

CONCLUSIONS

This analytical tool offers potential for real-time TDM in the clinical setting.

HIGHLIGHTS

FTIR spectroscopy was evaluated for the first time to predict VPA in human plasma for TDM. Two regressions were evaluated to predict VPA in human plasma, and the best-performing model was obtained using nonlinear SVR.

摘要

背景

最近的技术进步推动了个性化医疗从理论走向临床实践。然而,治疗药物监测(TDM)等领域的进展仍有些停滞不前。在具有明确剂量-反应关系的药物中,TDM 可以提高患者的治疗效果并降低医疗成本。基于色谱或免疫测定技术等传统监测方法受到成本较高和周转时间较慢的限制,不适合实时或现场分析。

目的

在这项工作中,我们提出了一种使用快速、直接和简单的傅里叶变换红外光谱(FT-IR)结合化学计量学技术来监测丙戊酸(VPA)的方法。

方法

在此背景下,从含有不同浓度 VPA 的人血浆样本中构建了 FT-IR 光谱数据库;这些样本通过参考方法(免疫测定技术)进行特征化,以确定 VPA 含量。FT-IR 光谱通过两种化学计量学回归方法进行处理:偏最小二乘回归(PLS)和支持向量回归(SVR)。

结果

结果为 FT-IR 光谱结合 SVR 模型用于估计人血浆中 VPA 的有效性提供了很好的证据。SVR 模型在预测误差 RMSEC、RMSEP、R2Cal、R2Pred 和剩余预测偏差(RPD)方面优于 PLS 模型,表现出更好的预测能力。

结论

这种分析工具为临床实时 TDM 提供了潜力。

重点

FTIR 光谱法首次被评估用于 TDM 中预测人血浆中的 VPA。评估了两种回归方法来预测人血浆中的 VPA,使用非线性 SVR 获得了性能最佳的模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验