Suppr超能文献

衰减全反射傅里叶变换红外光谱结合化学计量学建模用于临床相关肠球菌的分类。

Attenuated Total Reflection Fourier Transform Infrared Spectroscopy combined with chemometric modelling for the classification of clinically relevant Enterococci.

机构信息

Biomedical Science Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand.

Centre for Research and Development of Medical Diagnostic Laboratories (CDML), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.

出版信息

J Appl Microbiol. 2021 Mar;130(3):982-993. doi: 10.1111/jam.14820. Epub 2020 Aug 28.

Abstract

AIMS

Attenuated Total Reflection Fourier Transform Infrared (ATR-FT-IR) Spectroscopy and chemometric modelling, including soft independent modelling by class analogy (SIMCA), partial least squares discriminant analysis (PLS-DA) and support vector machine (SVM), were applied to attempt to discriminate 60 clinical isolates of Enterococcus faecium and Enterococcus faecalis and hence evaluate the performance of the spectroscopic approach in identifying enterococci infections.

METHODS AND RESULTS

The bacterial samples were identified by polymerize chain reaction (PCR) amplification and their ATR-FT-IR spectra acquired. Spectra were processed to the second derivative using the Savitzky-Golay algorithm and normalized using extended multiplicative signal correction employing the UnscramblerX (CAMO, Norway) software package. Multivariate classification models and their performance were evaluated using Cohen's Kappa coefficient. Principal component analysis (PCA) score plots showed separate clusters of spectra related to membership to E. faecium and E. faecalis, with this explained by bands assigned to PO (1230 cm ), P-O-C (1114 cm ), monosubstituted alkene (997, 987 cm ) and C-O (1070, 1055, 1036 cm ) corresponding to teichoic acids, polysaccharides and peptidoglycan from the cell wall in PCA and PLS-DA loading plots. The best classification model for E. faecium and E. faecalis is SVM, indicating via highest Kappa score. The classification coefficient between SIMCA, PLS-DA, SVM and PCR as reference method were 0·59, 0·9 and 1, respectively, shown as the Kappa scores.

CONCLUSIONS

The main spectral differences observed between the two clinically relevant enterococci species were associated with changes in the teichoic acid content of cell walls. With regard to the binary classification method, SVM was found to be the best performing classification model, providing the highest correlation with the PCR results.

SIGNIFICANCE AND IMPACT OF THE STUDY

The study shows that ATR-FT-IR spectroscopy in combination with chemometric modelling can be applied for the phenotypic identification and discrimination of clinically relevant and similar enterococcal species.

摘要

目的

应用衰减全反射傅里叶变换红外(ATR-FT-IR)光谱和化学计量学建模,包括软独立建模分类分析(SIMCA)、偏最小二乘判别分析(PLS-DA)和支持向量机(SVM),尝试区分 60 株临床粪肠球菌和屎肠球菌,并评估光谱方法在鉴定肠球菌感染中的性能。

方法和结果

通过聚合酶链反应(PCR)扩增鉴定细菌样本,并获取其 ATR-FT-IR 光谱。使用 Savitzky-Golay 算法对光谱进行二阶导数处理,并使用 UnscramblerX(CAMO,挪威)软件包中的扩展乘法信号校正进行归一化。使用 Cohen's Kappa 系数评估多元分类模型及其性能。主成分分析(PCA)得分图显示与粪肠球菌和屎肠球菌成员关系相关的光谱分离簇,这可通过分配给磷壁酸、多糖和肽聚糖的 PO(1230 cm)、P-O-C(1114 cm)、单取代烯烃(997、987 cm)和 C-O(1070、1055、1036 cm)的带得到解释,这些带来自细胞壁中的磷壁酸、多糖和肽聚糖。对于粪肠球菌和屎肠球菌,SVM 是最佳分类模型,其 Kappa 评分最高。SIMCA、PLS-DA、SVM 和 PCR 作为参考方法之间的分类系数分别为 0.59、0.9 和 1,分别表示 Kappa 评分。

结论

两种临床上相关的肠球菌物种之间观察到的主要光谱差异与细胞壁磷壁酸含量的变化有关。就二元分类方法而言,SVM 是表现最佳的分类模型,与 PCR 结果的相关性最高。

研究意义和影响

该研究表明,ATR-FT-IR 光谱结合化学计量学建模可用于临床相关和相似肠球菌物种的表型鉴定和区分。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验