Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British ColumbiaV6T 1Z3, Canada.
NanoVation Therapeutics, 2405 Wesbrook Mall, Vancouver, British ColumbiaV6T 1Z3, Canada.
Langmuir. 2022 Nov 22;38(46):14036-14043. doi: 10.1021/acs.langmuir.2c01492. Epub 2022 Nov 11.
Nucleic acid therapeutics represent a major advance toward treating diseases at their root cause. However, nucleic acids are prone to degradation by serum endonucleases, clearance through the immune system, and rapid degradation in complex medium. To overcome these barriers, nucleic acids frequently include chemical modifications to improve stability or decrease immune responses. Lipid nanoparticles (LNPs) have enabled a dramatic reduction in the dose required to achieve a therapeutic effect by protecting these nucleic acids and improving their intracellular delivery. It has been assumed thus far that nonspecific ionic interactions drive LNP formation and chemical modifications to the nucleic acid backbone to confer improved stability do not impact LNP delivery in any way. Here, we demonstrate that these chemical modifications do impact LNP morphology substantially, and phosphorothioate modifications produce stronger interactions with ionizable amino lipids, resulting in enhanced entrapment. This work represents a major first step toward greater understanding of the interaction between the lipid components and nucleic acids within an LNP.
核酸疗法代表了朝着从根本上治疗疾病的重大进展。然而,核酸容易被血清核酸内切酶降解,通过免疫系统清除,并且在复杂介质中迅速降解。为了克服这些障碍,核酸经常包括化学修饰以提高稳定性或降低免疫反应。脂质纳米颗粒(LNP)通过保护这些核酸并改善其细胞内递送来显著降低达到治疗效果所需的剂量。到目前为止,人们一直认为非特异性离子相互作用驱动 LNP 的形成,并且改善稳定性的核酸主链化学修饰不会以任何方式影响 LNP 的递送。在这里,我们证明这些化学修饰确实会极大地影响 LNP 的形态,并且硫代磷酸酯修饰与可离子化的氨基脂质产生更强的相互作用,从而增强了包封。这项工作代表了朝着更好地理解 LNP 内脂质成分和核酸之间相互作用迈出的重要的第一步。