Suppr超能文献

羧酶体在蓝藻 CO 同化中的作用:CO 浓缩机制和代谢物的影响。

Role of carboxysomes in cyanobacterial CO assimilation: CO concentrating mechanisms and metabolon implications.

机构信息

Department of Biochemistry, University of Colorado, Boulder, Colorado, USA.

Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado, USA.

出版信息

Environ Microbiol. 2023 Feb;25(2):219-228. doi: 10.1111/1462-2920.16283. Epub 2022 Nov 22.

Abstract

Many carbon-fixing organisms have evolved CO concentrating mechanisms (CCMs) to enhance the delivery of CO to RuBisCO, while minimizing reactions with the competitive inhibitor, molecular O . These distinct types of CCMs have been extensively studied using genetics, biochemistry, cell imaging, mass spectrometry, and metabolic flux analysis. Highlighted in this paper, the cyanobacterial CCM features a bacterial microcompartment (BMC) called 'carboxysome' in which RuBisCO is co-encapsulated with the enzyme carbonic anhydrase (CA) within a semi-permeable protein shell. The cyanobacterial CCM is capable of increasing CO around RuBisCO, leading to one of the most efficient processes known for fixing ambient CO . The carboxysome life cycle is dynamic and creates a unique subcellular environment that promotes activity of the Calvin-Benson (CB) cycle. The carboxysome may function within a larger cellular metabolon, physical association of functionally coupled proteins, to enhance metabolite channelling and carbon flux. In light of CCMs, synthetic biology approaches have been used to improve enzyme complex for CO fixations. Research on CCM-associated metabolons has also inspired biologists to engineer multi-step pathways by providing anchoring points for enzyme cascades to channel intermediate metabolites towards valuable products.

摘要

许多固碳生物已经进化出 CO2浓缩机制(CCMs),以增强 CO2向 RuBisCO 的传递,同时最小化与竞争性抑制剂分子 O2的反应。这些不同类型的 CCM 已经通过遗传学、生物化学、细胞成像、质谱和代谢通量分析进行了广泛研究。本文重点介绍了蓝细菌 CCM 的特征,即一种称为“羧化体”的细菌微区室,其中 RuBisCO 与碳酸酐酶(CA)一起被包裹在半透性蛋白质壳内。蓝细菌 CCM 能够增加 RuBisCO 周围的 CO2,从而形成已知最有效的固定环境 CO2的过程之一。羧化体的生命周期是动态的,创造了一个独特的亚细胞环境,促进了卡尔文-本森(CB)循环的活性。羧化体可能在更大的细胞代谢物中发挥作用,即功能偶联蛋白的物理关联,以增强代谢物的通道和碳通量。鉴于 CCM 的存在,合成生物学方法已被用于改进 CO2固定的酶复合物。对 CCM 相关代谢物的研究也启发了生物学家通过为酶级联提供锚固点来设计多步途径,将中间代谢物引导到有价值的产物上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验