MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824.
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
Proc Natl Acad Sci U S A. 2024 Nov 5;121(45):e2402277121. doi: 10.1073/pnas.2402277121. Epub 2024 Nov 1.
Carboxysomes are protein microcompartments found in cyanobacteria, whose shell encapsulates rubisco at the heart of carbon fixation in the Calvin cycle. Carboxysomes are thought to locally concentrate CO in the shell interior to improve rubisco efficiency through selective metabolite permeability, creating a concentrated catalytic center. However, permeability coefficients have not previously been determined for these gases, or for Calvin-cycle intermediates such as bicarbonate ([Formula: see text]), 3-phosphoglycerate, or ribulose-1,5-bisphosphate. Starting from a high-resolution cryogenic electron microscopy structure of a synthetic [Formula: see text]-carboxysome shell, we perform unbiased all-atom molecular dynamics to track metabolite permeability across the shell. The synthetic carboxysome shell structure, lacking the bacterial microcompartment trimer proteins and encapsulation peptides, is found to have similar permeability coefficients for multiple metabolites, and is not selectively permeable to [Formula: see text] relative to CO. To resolve how these comparable permeabilities can be reconciled with the clear role of the carboxysome in the CO-concentrating mechanism in cyanobacteria, complementary atomic-resolution Brownian Dynamics simulations estimate the mean first passage time for CO assimilation in a crowded model carboxysome. Despite a relatively high CO permeability of approximately 10 cm/s across the carboxysome shell, the shell proteins reflect enough CO back toward rubisco that 2,650 CO molecules can be fixed by rubisco for every 1 CO molecule that escapes under typical conditions. The permeabilities determined from all-atom molecular simulation are key inputs into flux modeling, and the insight gained into carbon fixation can facilitate the engineering of carboxysomes and other bacterial microcompartments for multiple applications.
羧基体是在蓝细菌中发现的蛋白质微室,其外壳将 Rubisco 包裹在卡尔文循环碳固定的核心部位。羧基体被认为通过选择性代谢物通透性在壳体内局部浓缩 CO,从而提高 Rubisco 的效率,形成一个浓缩的催化中心。然而,之前尚未确定这些气体的渗透系数,也未确定卡尔文循环中间产物如碳酸氢盐([Formula: see text])、3-磷酸甘油酸或核酮糖 1,5-二磷酸的渗透系数。从合成[Formula: see text]-羧基体外壳的高分辨率低温电子显微镜结构开始,我们进行无偏全原子分子动力学模拟,以追踪代谢物穿过外壳的渗透率。缺乏细菌微室三聚体蛋白和封装肽的合成羧基体外壳结构,对于多种代谢物具有相似的渗透系数,并且对于 CO 相对于[Formula: see text]没有选择性通透性。为了解决这些可比的渗透率如何与羧基体在蓝细菌 CO 浓缩机制中的明显作用相协调,补充原子分辨率的布朗动力学模拟估计了在拥挤的模型羧基体中 CO 同化的平均首次通过时间。尽管 CO 穿过羧基体外壳的渗透率约为 10 cm/s,但外壳蛋白将足够的 CO 反射回 Rubisco,以至于在典型条件下,每逃逸 1 个 CO 分子,Rubisco 就可以固定 2650 个 CO 分子。从全原子分子模拟确定的渗透率是通量建模的关键输入,对碳固定的深入了解可以促进羧基体和其他细菌微室的工程设计,以用于多种应用。