Danninger Doris, Pruckner Roland, Holzinger Laura, Koeppe Robert, Kaltenbrunner Martin
Division of Soft Matter Physics, Institute for Experimental Physics, Johannes Kepler University, Altenberger Str. 69, Linz 4040, Austria.
Soft Materials Lab, Linz Institute of Technology, Johannes Kepler University, Altenberger Str. 69, Linz 4040, Austria.
Sci Adv. 2022 Nov 11;8(45):eadd7118. doi: 10.1126/sciadv.add7118.
Electronic devices are irrevocably integrated into our lives. Yet, their limited lifetime and often improvident disposal demands sustainable concepts to realize a green electronic future. Research must shift its focus on substituting nondegradable and difficult-to-recycle materials to allow either biodegradation or facile recycling of electronic devices. Here, we demonstrate a concept for growth and processing of fungal mycelium skins as biodegradable substrate material for sustainable electronics. The skins allow common electronic processing techniques including physical vapor deposition and laser patterning for electronic traces with conductivities as high as 9.75 ± 1.44 × 10 S cm. The conformal and flexible electronic mycelium skins withstand more than 2000 bending cycles and can be folded several times with only moderate resistance increase. We demonstrate mycelium batteries with capacities as high as ~3.8 mAh cm used to power autonomous sensing devices including a Bluetooth module and humidity and proximity sensor.
电子设备已不可逆转地融入我们的生活。然而,它们有限的使用寿命以及常常不合理的处置方式需要可持续的理念来实现绿色电子未来。研究必须将重点转向替代不可降解且难以回收的材料,以使电子设备能够实现生物降解或易于回收利用。在此,我们展示了一种将真菌菌丝体表皮作为可持续电子产品的可生物降解基底材料进行生长和加工的概念。这种表皮允许采用包括物理气相沉积和激光图案化在内的常见电子加工技术来制作电导率高达9.75±1.44×10 S/cm的电子线路。这种贴合且灵活的电子菌丝体表皮能够承受超过2000次弯曲循环,并且可以折叠数次,仅伴随着适度的电阻增加。我们展示了容量高达约3.8 mAh/cm²的菌丝体电池,用于为包括蓝牙模块以及湿度和接近度传感器在内的自主传感设备供电。