Department of Physics, Chandigarh University, Gharuan, Mohali, Punjab, India; Govt. College Dhaliara, Kangra, Himachal Pradesh, India.
Department of Physics, Chandigarh University, Gharuan, Mohali, Punjab, India.
Environ Res. 2023 Jan 1;216(Pt 4):114751. doi: 10.1016/j.envres.2022.114751. Epub 2022 Nov 9.
In an era of environment-friendly development plant extract-based biological techniques for synthesizing nanoparticles have gained a lot of attention over traditionally famous chemical and physical synthesis techniques. In the present study we have synthesized biogenic zinc oxide nanoparticles (BPLE-ZnO NPs) using Bryophyllum pinnatum leaf extract, compared its native properties and solar-driven photocatalytic activity with chemically prepared ZnO nanoparticles (Chem-ZnO NPs). In order to characterize and compare the Chem-ZnO and BPLE-ZnO, various techniques were used, including UV-visible spectroscopy, x-ray diffractrometry, photoluminescence spectroscopy, field emission scanning electron microscopy, electron dispersive x-ray spectroscopy, fourier transform infrared spectroscopy, and zeta potential analyzer. The results revealed the formation of hexagonal wurtzite ZnO, with no significant difference between the two methods; however, the use of Bryophyllum pinnatum leaf extract in ZnO NPs synthesis resulted in reduced size, presence of biomolecules on its surface and better monodispersity than purely chemical synthesis. Further, the BPLE-ZnO NPs showed better efficiency in the solar-driven photocatalytic degradation of methylene blue (MB) dye compared to Chem-ZnO NPs. Under solar exposure at a dose of 0.50 mg/mL BPLE-ZnO, resulted in 97.31% photodegradation with a rate constant of 0.06 min of 20 mg/L MB solution within just 60 min which was 9.51% higher compared to the Chem-ZnO NPs. The BPLE-ZnO NPs were also employed to investigate their solar-driven photocatalytic performance for degrading the pharmaceutical (Metronidazole and Amoxycillin) and textile pollutants (Methyl orange dye) under sunlight. The results show that Bryophyllum pinnatum leaf extract-mediated ZnO NPs have an excellent potential in solar-based photocatalytic applications.
在环保发展的时代,基于植物提取物的生物技术在合成纳米粒子方面引起了人们的广泛关注,超越了传统的著名的化学和物理合成技术。在本研究中,我们使用落地生根叶提取物合成了生物合成氧化锌纳米粒子(BPLE-ZnO NPs),并将其与化学合成的氧化锌纳米粒子(Chem-ZnO NPs)的固有性质和太阳能驱动的光催化活性进行了比较。为了对 Chem-ZnO 和 BPLE-ZnO 进行表征和比较,我们使用了各种技术,包括紫外-可见分光光度法、X 射线衍射、光致发光光谱、场发射扫描电子显微镜、电子能谱、傅里叶变换红外光谱和zeta 电位分析仪。结果表明,形成了六方纤锌矿 ZnO,两种方法之间没有明显差异;然而,在 ZnO NPs 合成中使用落地生根叶提取物会导致尺寸减小、表面存在生物分子和更好的单分散性,优于纯化学合成。此外,与 Chem-ZnO NPs 相比,BPLE-ZnO NPs 在太阳能驱动的亚甲基蓝(MB)染料光催化降解中表现出更高的效率。在 0.50mg/mL BPLE-ZnO 的太阳能照射下,20mg/L MB 溶液在 60min 内的光降解率达到 97.31%,速率常数为 0.06min,比 Chem-ZnO NPs 高 9.51%。BPLE-ZnO NPs 还用于研究它们在阳光照射下对医药(甲硝唑和阿莫西林)和纺织污染物(甲基橙染料)的太阳能驱动光催化性能。结果表明,落地生根叶提取物介导的 ZnO NPs 在基于太阳能的光催化应用中具有巨大的潜力。