Suppr超能文献

通过从盐生植物来源中生态友好地合成和优化纳米粒子来增强番茄在盐环境中的生长。

Enhancing tomato plant growth in a saline environment through the eco-friendly synthesis and optimization of nanoparticles derived from halophytic sources.

机构信息

Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan.

Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan.

出版信息

Environ Sci Pollut Res Int. 2023 Dec;30(56):118830-118854. doi: 10.1007/s11356-023-30626-1. Epub 2023 Nov 3.

Abstract

Using green synthesis methods to produce halophytic nanoparticles presents a promising and cost-effective approach for enhancing plant growth in saline environments, offering agricultural resilience as an alternative to traditional chemical methods. This study focuses on synthesizing zinc oxide (ZnO) nanoparticles derived from the halophyte Withania somnifera, showcasing their potential in ameliorating tomato growth under salinity stress. The biosynthesis of ZnO nanoparticles was initially optimized (i.e., salt concentration, the amount of plant extract, pH, and temperature) using a central composite design (CCD) of response surface methodology (RSM) together with UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and dynamic light scattering (DLS) to comprehensively characterize the biosynthesized ZnO NPs. The central composite design (CCD) based response surface methodology (RSM) was used to optimize the biosynthesis of ZnO nanoparticles (NPs) by adjusting salt concentration, plant extract, pH, and temperature. The ZnO NPs were characterized using UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and dynamic light scattering (DLS). FT-IR showed an absorption peak of ZnO between 400 and 600 cm, while SEM showed irregular shapes ranging between 1.3 and 6 nm. The data of EDX showed the presence of Zn (77.52%) and O (22.48%) levels, which exhibited the high purity synthesized ZnO under saline conditions. Introducing ZnO nanoparticles to tomato plants resulted in a remarkable 2.3-fold increase in shoot length in T23 (100 mg/L ZnO nanoparticles + 50 mM NaCl). There was an observable increase in foliage at T2 (20 mg L ZnO) and T23 (100 mg L ZnO-NPs + 50 mM NaCl). Tomato plants treated with T2 (20 mg L ZnO) and T23 (100 mg L ZnO-NPs + 50 mM NaCl) improved root elongation compared to the control plant group. Both fresh and dry leaf masses were significantly improved in T1 (10 mg L ZnO) by 7.1-fold and T12 (10 mg L ZnO-NPs + 100 mM NaCl) by 0.8-fold. The concentration of Zn was higher in T12 (10 mg L ZnO NPs + 100 mM NaCl) among all treatments. Our findings prove that utilizing ZnO nanoparticles under saline conditions effectively promotes tomato plants' growth, thereby mitigating the negative impacts of salt stress.

摘要

利用绿色合成方法生产盐生纳米粒子为提高盐环境中植物生长提供了一种有前途且具有成本效益的方法,为传统的化学方法提供了一种替代方案,增强了农业的弹性。本研究专注于合成来自盐生植物 Withania somnifera 的氧化锌 (ZnO) 纳米粒子,展示了它们在缓解盐胁迫下番茄生长方面的潜力。使用中心复合设计 (CCD) 响应面法 (RSM) 与紫外-可见光谱、傅里叶变换红外光谱 (FT-IR)、场发射扫描电子显微镜 (FESEM)、能量色散光谱 (EDS)、X 射线衍射 (XRD) 和动态光散射 (DLS) 对氧化锌纳米粒子的合成进行了优化,对氧化锌纳米粒子的合成进行了优化 (即盐浓度、植物提取物的量、pH 值和温度)。使用紫外-可见光谱、傅里叶变换红外光谱 (FT-IR)、场发射扫描电子显微镜 (FESEM)、能量色散光谱 (EDS)、X 射线衍射 (XRD) 和动态光散射 (DLS) 对 ZnO NPs 进行了表征。FT-IR 在 400 到 600 cm 之间显示了 ZnO 的吸收峰,而 SEM 显示了 1.3 到 6nm 之间的不规则形状。EDX 数据显示 Zn(77.52%)和 O(22.48%)的存在,这表明在盐条件下合成了高纯度的 ZnO。将 ZnO 纳米粒子引入番茄植物中,导致 T23(100mg/L ZnO 纳米粒子+50mM NaCl)的茎长增加了 2.3 倍。T2(20mg L ZnO)和 T23(100mg L ZnO-NPs+50mM NaCl)的叶片明显增加。与对照植物组相比,用 T2(20mg L ZnO)和 T23(100mg L ZnO-NPs+50mM NaCl)处理的番茄植物的根伸长得到了改善。T1(10mg L ZnO)和 T12(10mg L ZnO-NPs+100mM NaCl)的鲜叶和干叶质量分别提高了 7.1 倍和 0.8 倍。在所有处理中,T12(10mg L ZnO NPs+100mM NaCl)中的 Zn 浓度最高。我们的研究结果证明,在盐环境下使用 ZnO 纳米粒子可以有效促进番茄植物的生长,从而减轻盐胁迫的负面影响。

相似文献

1
Enhancing tomato plant growth in a saline environment through the eco-friendly synthesis and optimization of nanoparticles derived from halophytic sources.
Environ Sci Pollut Res Int. 2023 Dec;30(56):118830-118854. doi: 10.1007/s11356-023-30626-1. Epub 2023 Nov 3.
2
Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Mentha pulegium (L.).
Microb Pathog. 2019 Jun;131:239-245. doi: 10.1016/j.micpath.2019.04.022. Epub 2019 Apr 17.
3
Mycogenic Synthesis of Extracellular Zinc Oxide Nanoparticles from and Its Nanoantibiotic Potential.
Int J Nanomedicine. 2020 Nov 2;15:8519-8536. doi: 10.2147/IJN.S271743. eCollection 2020.
4
Antiplatelet, cytotoxic activities and characterization of green-synthesized zinc oxide nanoparticles using aqueous extract of Nephrolepis exaltata.
Environ Sci Pollut Res Int. 2023 Jun;30(29):73870-73880. doi: 10.1007/s11356-023-27483-3. Epub 2023 May 17.
6
Competent antioxidant and antiglycation properties of zinc oxide nanoparticles (ZnO-NPs) phyto-fabricated from aqueous leaf extract of Boerhaavia erecta L.
Environ Sci Pollut Res Int. 2023 Apr;30(19):56731-56742. doi: 10.1007/s11356-023-26331-8. Epub 2023 Mar 16.
7
Biosynthesis and Anti-inflammatory Activity of Zinc Oxide Nanoparticles Using Leaf Extract of .
Biomed Res Int. 2023 Apr 11;2023:3280708. doi: 10.1155/2023/3280708. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验