Suppr超能文献

精确确定轴向配体对铂单原子催化剂高效碱性析氢反应的影响。

Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction.

作者信息

Zhang Tianyu, Jin Jing, Chen Junmei, Fang Yingyan, Han Xu, Chen Jiayi, Li Yaping, Wang Yu, Liu Junfeng, Wang Lei

机构信息

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.

Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore.

出版信息

Nat Commun. 2022 Nov 12;13(1):6875. doi: 10.1038/s41467-022-34619-5.

Abstract

Developing active single-atom-catalyst (SAC) for alkaline hydrogen evolution reaction (HER) is a promising solution to lower the green hydrogen cost. However, the correlations are not clear between the chemical environments around the active-sites and their desired catalytic activity. Here we study a group of SACs prepared by anchoring platinum atoms on NiFe-layered-double-hydroxide. While maintaining the homogeneity of the Pt-SACs, various axial ligands (-F, -Cl, -Br, -I, -OH) are employed via a facile irradiation-impregnation procedure, enabling us to discover definite chemical-environments/performance correlations. Owing to its high first-electron-affinity, chloride chelated Pt-SAC exhibits optimized bindings with hydrogen and hydroxide, which favor the sluggish water dissociation and further promote the alkaline HER. Specifically, it shows high mass-activity of 30.6 A mgPt and turnover frequency of 30.3  H s at 100 mV overpotential, which are significantly higher than those of the state-of-the-art Pt-SACs and commercial Pt/C catalyst. Moreover, high energy efficiency of 80% is obtained for the alkaline water electrolyser assembled using the above catalyst under practical-relevant conditions.

摘要

开发用于碱性析氢反应(HER)的活性单原子催化剂(SAC)是降低绿色氢能成本的一个有前景的解决方案。然而,活性位点周围的化学环境与其所需催化活性之间的关联尚不清楚。在此,我们研究了一组通过将铂原子锚定在镍铁层状双氢氧化物上制备的SAC。在保持铂单原子催化剂均匀性的同时,通过简便的辐照浸渍法引入了各种轴向配体(-F、-Cl、-Br、-I、-OH),使我们能够发现明确的化学环境/性能相关性。由于其高第一电子亲和力,氯化物螯合的铂单原子催化剂表现出与氢和氢氧化物的优化结合,这有利于缓慢的水离解并进一步促进碱性析氢反应。具体而言,在100 mV过电位下,它表现出30.6 A mgPt的高质量活性和30.3 H s的周转频率,显著高于目前最先进的铂单原子催化剂和商业铂碳催化剂。此外,在实际相关条件下,使用上述催化剂组装的碱性水电解槽可获得80%的高能效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b804/9653394/f64e750d8deb/41467_2022_34619_Fig1_HTML.jpg

相似文献

4
Single-Atom Pt Embedded in Defective Layered Double Hydroxide for Efficient and Durable Hydrogen Evolution.
ACS Appl Mater Interfaces. 2023 Sep 13;15(36):42501-42510. doi: 10.1021/acsami.3c07000. Epub 2023 Aug 28.
5
Diversity of platinum-sites at platinum/fullerene interface accelerates alkaline hydrogen evolution.
Nat Commun. 2023 Mar 27;14(1):1711. doi: 10.1038/s41467-023-37404-0.
6
Merging Platinum Single Atoms to Achieve Ultrahigh Mass Activity and Low Hydrogen Production Cost.
ACS Nano. 2023 Feb 14;17(3):2923-2931. doi: 10.1021/acsnano.2c11338. Epub 2023 Feb 1.
7
Partial-Single-Atom, Partial-Nanoparticle Composites Enhance Water Dissociation for Hydrogen Evolution.
Adv Sci (Weinh). 2020 Nov 25;8(2):2001881. doi: 10.1002/advs.202001881. eCollection 2021 Jan.
8
Synergic Reaction Kinetics over Adjacent Ruthenium Sites for Superb Hydrogen Generation in Alkaline Media.
Adv Mater. 2022 May;34(20):e2110604. doi: 10.1002/adma.202110604. Epub 2022 Apr 11.
10
Ir Single Atom Catalyst Loaded on Amorphous Carbon Materials with High HER Activity.
Adv Sci (Weinh). 2022 May;9(13):e2105392. doi: 10.1002/advs.202105392. Epub 2022 Mar 9.

引用本文的文献

1
Precise Synthesis at the Atomic Scale.
Precis Chem. 2023 May 26;1(4):199-225. doi: 10.1021/prechem.3c00022. eCollection 2023 Jun 26.
2
Single Atom Engineering for Electrocatalysis: Fundamentals and Applications.
ACS Catal. 2025 Jun 20;15(13):11617-11663. doi: 10.1021/acscatal.4c08027. eCollection 2025 Jul 4.
3
Sustainable and cost-efficient hydrogen production using platinum clusters at minimal loading.
Nat Commun. 2025 May 9;16(1):4314. doi: 10.1038/s41467-025-59450-6.
4
A Nanostructured Ru-Mn-Nb Alloy with Oxygen-Enriched Boundaries for Ampere-Level Hydrogen Evolution.
Adv Sci (Weinh). 2025 Jul;12(27):e2501976. doi: 10.1002/advs.202501976. Epub 2025 Apr 26.
7
8
Ligand-tuning copper in coordination polymers for efficient electrochemical C-C coupling.
Nat Commun. 2024 Jul 26;15(1):6316. doi: 10.1038/s41467-024-50791-2.

本文引用的文献

1
Reconciling the Volcano Trend with the Butler-Volmer Model for the Hydrogen Evolution Reaction.
J Phys Chem Lett. 2022 Jun 8:5310-5315. doi: 10.1021/acs.jpclett.2c01411.
2
Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution.
Nat Commun. 2022 May 5;13(1):2473. doi: 10.1038/s41467-022-30148-3.
4
A high-performance capillary-fed electrolysis cell promises more cost-competitive renewable hydrogen.
Nat Commun. 2022 Mar 15;13(1):1304. doi: 10.1038/s41467-022-28953-x.
6
Single Carbon Vacancy Traps Atomic Platinum for Hydrogen Evolution Catalysis.
J Am Chem Soc. 2022 Feb 9;144(5):2171-2178. doi: 10.1021/jacs.1c10814. Epub 2022 Jan 7.
7
Clusters Induced Electron Redistribution to Tune Oxygen Reduction Activity of Transition Metal Single-Atom for Metal-Air Batteries.
Angew Chem Int Ed Engl. 2022 Mar 14;61(12):e202116068. doi: 10.1002/anie.202116068. Epub 2022 Jan 31.
8
A general strategy for preparing pyrrolic-N type single-atom catalysts via pre-located isolated atoms.
Nat Commun. 2021 Nov 23;12(1):6806. doi: 10.1038/s41467-021-27143-5.
9
A Theory-Guided X-ray Absorption Spectroscopy Approach for Identifying Active Sites in Atomically Dispersed Transition-Metal Catalysts.
J Am Chem Soc. 2021 Dec 8;143(48):20144-20156. doi: 10.1021/jacs.1c07116. Epub 2021 Nov 22.
10
Electronically and Geometrically Modified Single-Atom Fe Sites by Adjacent Fe Nanoparticles for Enhanced Oxygen Reduction.
Adv Mater. 2022 Feb;34(5):e2107291. doi: 10.1002/adma.202107291. Epub 2021 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验