Suppr超能文献

将铂单原子融合以实现超高质量活性和低制氢成本。

Merging Platinum Single Atoms to Achieve Ultrahigh Mass Activity and Low Hydrogen Production Cost.

机构信息

Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan, Shanghai 200433, P.R. China.

School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan 44919, South Korea.

出版信息

ACS Nano. 2023 Feb 14;17(3):2923-2931. doi: 10.1021/acsnano.2c11338. Epub 2023 Feb 1.

Abstract

Single atom catalysts (SACs) with isolated active sites exhibit the highest reported mass activity for hydrogen evolution catalysis, which is crucial for practical applications. Here, we demonstrate that ultrahigh mass activity can also be achieved by rationally merging the isolated platinum (Pt) active sites in SAC. The catalyst was obtained by the thermodynamically driven diffusing and merging phosphorus-doped carbon (PC) supported Pt single atoms (Pt@PC) into Pt nanoclusters (Pt@PC). X-ray absorption spectroscopy analysis revealed that the merged nanoclusters exhibit much stronger interactions with the support than the traditional method, enabling more efficient electron transfer. The optimized Pt@PC exhibited an order of magnitude higher mass activity (12.7 A mg) than Pt@PC (0.9 A mg) at an overpotential of 10 mV in acidic media, which is the highest record to date, far exceeding reports for other outstanding SACs. Theoretical study revealed that the collective active sites in Pt@PC exhibit both favorable hydrogen binding energy and fast reaction kinetics, leading to the significantly enhanced mass activity. Despite its low Pt content (2.2 wt %), a low hydrogen production cost of ∼3 USD kg was finally achieved in the full-water splitting at a laboratory scale.

摘要

单原子催化剂 (SACs) 具有孤立的活性位点,表现出报道的最高析氢催化质量活性,这对于实际应用至关重要。在这里,我们证明通过合理地合并 SAC 中孤立的铂 (Pt) 活性位点,也可以实现超高的质量活性。该催化剂是通过热力学驱动的磷掺杂碳 (PC) 负载的 Pt 单原子 (Pt@PC) 扩散和合并为 Pt 纳米团簇 (Pt@PC) 而获得的。X 射线吸收光谱分析表明,与传统方法相比,合并的纳米团簇与载体之间具有更强的相互作用,从而实现更有效的电子转移。在酸性介质中,优化后的 Pt@PC 在过电势为 10 mV 时的质量活性 (12.7 A mg) 比 Pt@PC (0.9 A mg) 高出一个数量级,这是迄今为止的最高记录,远远超过了其他优秀 SACs 的报道。理论研究表明,Pt@PC 中的集体活性位点表现出有利的氢结合能和快速反应动力学,从而显著提高了质量活性。尽管 Pt 含量低 (2.2 wt %),但最终在实验室规模的全水分解中实现了约 3 美元 kg 的低制氢成本。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验