Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
Free Radic Biol Med. 2022 Nov 20;193(Pt 2):669-675. doi: 10.1016/j.freeradbiomed.2022.11.009. Epub 2022 Nov 11.
Numerous epidemiological and preclinical studies have established a strong correlation between type 2 diabetes (T2DM) and cognitive impairment and T2DM is now established as an undisputable risk factor in different forms of dementia. However, the mechanisms underlying cognitive impairment in T2DM are still not fully understood. The temporal and spatial coupling between neuronal activity and cerebral blood flow (CBF) - neurovascular coupling (NVC) - is essential for normal brain function. Neuronal-derived nitric oxide (NO) produced through the nNOS-NMDAr pathway, is recognized as a key messenger in NVC, especially in the hippocampus. Of note, impaired hippocampal perfusion in T2DM patients has been closely linked to learning and memory dysfunction. In this study, we aimed to investigate the functionality of NVC, in terms of neuronal-NO signaling and spatial memory performance, in young Goto-Kakizaki (GK) rats, a non-obese model of T2DM. For that, we performed direct and simultaneous measurements of NO concentration dynamics and microvascular CBF changes in the hippocampus upon glutamatergic activation. We found that limited NO bioavailability, connected to shorter and faster NO transients in response to glutamatergic neuronal activation, is associated with decreased hemodynamic responses and a decline in spatial memory performance. This evidence supports a close mechanistic association between neuronal-triggered NO concentration dynamics in the hippocampus, local microvascular responses, and cognitive performance in young diabetic animals, establishing the functionality of NVC as a critical early factor to consider in the cascade of events leading to cognitive decline in T2DM. These results suggest that strategies capable to overcome the limited NO bioavailability in early stages of T2DM and maintaining a functional NVC pathway may configure pertinent therapeutic approaches to mitigate the risk for cognitive impairment in T2DM.
大量的流行病学和临床前研究已经证实 2 型糖尿病(T2DM)与认知障碍之间存在很强的相关性,并且 T2DM 现在已经被确定为不同类型痴呆症的一个明确的危险因素。然而,T2DM 导致认知障碍的机制仍不完全清楚。神经元活动与脑血流(CBF)之间的时空耦合——神经血管耦合(NVC)——是正常大脑功能的关键。神经元衍生的一氧化氮(NO)通过 nNOS-NMDAr 途径产生,被认为是 NVC 的关键信使,特别是在海马体中。值得注意的是,T2DM 患者海马体灌注受损与学习和记忆功能障碍密切相关。在这项研究中,我们旨在研究 NVC 的功能,包括神经元一氧化氮信号和空间记忆表现,在年轻的 Goto-Kakizaki(GK)大鼠中,一种非肥胖的 T2DM 模型。为此,我们在海马体中进行了谷氨酸能激活时 NO 浓度动态和微血管 CBF 变化的直接和同时测量。我们发现,NO 生物利用度有限,与谷氨酸能神经元激活时更短、更快的 NO 瞬变有关,与血液动力学反应降低和空间记忆表现下降有关。这一证据支持了海马体中神经元触发的 NO 浓度动态、局部微血管反应与年轻糖尿病动物认知表现之间的密切机制关联,确立了 NVC 的功能作为导致 T2DM 认知能力下降的级联事件中的一个关键早期因素。这些结果表明,能够克服 T2DM 早期阶段有限的 NO 生物利用度并维持功能性 NVC 途径的策略可能构成缓解 T2DM 认知障碍风险的相关治疗方法。