Suppr超能文献

正常及应激条件下大脑神经血管耦合中的一氧化氮信号通路:挽救异常耦合及改善脑血流的策略

Nitric Oxide Pathways in Neurovascular Coupling Under Normal and Stress Conditions in the Brain: Strategies to Rescue Aberrant Coupling and Improve Cerebral Blood Flow.

作者信息

Lourenço Cátia F, Laranjinha João

机构信息

Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.

Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.

出版信息

Front Physiol. 2021 Oct 22;12:729201. doi: 10.3389/fphys.2021.729201. eCollection 2021.

Abstract

The brain has impressive energy requirements and paradoxically, very limited energy reserves, implying its huge dependency on continuous blood supply. Aditionally, cerebral blood flow must be dynamically regulated to the areas of increased neuronal activity and thus, of increased metabolic demands. The coupling between neuronal activity and cerebral blood flow (CBF) is supported by a mechanism called neurovascular coupling (NVC). Among the several vasoactive molecules released by glutamatergic activation, nitric oxide (NO) is recognized to be a key player in the process and essential for the development of the neurovascular response. Classically, NO is produced in neurons upon the activation of the glutamatergic -methyl-D-aspartate (NMDA) receptor by the neuronal isoform of nitric oxide synthase and promotes vasodilation by activating soluble guanylate cyclase in the smooth muscle cells of the adjacent arterioles. This pathway is part of a more complex network in which other molecular and cellular intervenients, as well as other sources of NO, are involved. The elucidation of these interacting mechanisms is fundamental in understanding how the brain manages its energy requirements and how the failure of this process translates into neuronal dysfunction. Here, we aimed to provide an integrated and updated perspective of the role of NO in the NVC, incorporating the most recent evidence that reinforces its central role in the process from both viewpoints, as a physiological mediator and a pathological stressor. First, we described the glutamate-NMDA receptor-nNOS axis as a central pathway in NVC, then we reviewed the link between the derailment of the NVC and neuronal dysfunction associated with neurodegeneration (with a focus on Alzheimer's disease). We further discussed the role of oxidative stress in the NVC dysfunction, specifically by decreasing the NO bioavailability and diverting its bioactivity toward cytotoxicity. Finally, we highlighted some strategies targeting the rescue or maintenance of NO bioavailability that could be explored to mitigate the NVC dysfunction associated with neurodegenerative conditions. In line with this, the potential modulatory effects of dietary nitrate and polyphenols on NO-dependent NVC, in association with physical exercise, may be used as effective non-pharmacological strategies to promote the NO bioavailability and to manage NVC dysfunction in neuropathological conditions.

摘要

大脑有着惊人的能量需求,而矛盾的是,其能量储备却非常有限,这意味着它极大地依赖持续的血液供应。此外,脑血流量必须动态调节至神经元活动增加的区域,也就是代谢需求增加的区域。神经元活动与脑血流量(CBF)之间的耦合由一种称为神经血管耦合(NVC)的机制支持。在谷氨酸能激活释放的几种血管活性分子中,一氧化氮(NO)被认为是这一过程中的关键参与者,对神经血管反应的发展至关重要。传统上,NO在神经元中由一氧化氮合酶的神经元亚型激活谷氨酸能N-甲基-D-天冬氨酸(NMDA)受体后产生,并通过激活相邻小动脉平滑肌细胞中的可溶性鸟苷酸环化酶来促进血管舒张。这条途径是一个更复杂网络的一部分,其中还涉及其他分子和细胞介质以及其他NO来源。阐明这些相互作用的机制对于理解大脑如何管理其能量需求以及该过程的失败如何转化为神经元功能障碍至关重要。在此,我们旨在提供关于NO在NVC中作用的综合且最新的观点,纳入最新证据,从生理介质和病理应激源这两个角度强化其在该过程中的核心作用。首先,我们将谷氨酸-NMDA受体-nNOS轴描述为NVC中的核心途径,然后我们回顾了NVC失调与神经退行性变相关的神经元功能障碍之间的联系(重点关注阿尔茨海默病)。我们进一步讨论了氧化应激在NVC功能障碍中的作用,特别是通过降低NO的生物利用度并将其生物活性转向细胞毒性。最后,我们强调了一些旨在挽救或维持NO生物利用度的策略,这些策略可用于减轻与神经退行性疾病相关的NVC功能障碍。与此一致的是,膳食硝酸盐和多酚与体育锻炼联合对NO依赖的NVC的潜在调节作用,可作为有效的非药物策略来提高NO的生物利用度并管理神经病理状态下的NVC功能障碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb80/8569710/a950566d7f4b/fphys-12-729201-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验