School of Biological Sciences, Life Sciences, University of Bristol, Bristol, UK.
School of Biosciences, University of Birmingham, Birmingham, UK.
Plant Biotechnol J. 2023 Feb;21(2):405-418. doi: 10.1111/pbi.13961. Epub 2022 Dec 10.
Increasing crop yields through plant breeding is time consuming and laborious, with the generation of novel combinations of alleles being limited by chromosomal linkage blocks and linkage-drag. Meiotic recombination is essential to create novel genetic variation via the reshuffling of parental alleles. The exchange of genetic information between homologous chromosomes occurs at crossover (CO) sites but CO frequency is often low and unevenly distributed. This bias creates the problem of linkage-drag in recombination 'cold' regions, where undesirable variation remains linked to useful traits. In plants, programmed meiosis-specific DNA double-strand breaks, catalysed by the SPO11 complex, initiate the recombination pathway, although only ~5% result in the formation of COs. To study the role of SPO11-1 in wheat meiosis, and as a prelude to manipulation, we used CRISPR/Cas9 to generate edits in all three SPO11-1 homoeologues of hexaploid wheat. Characterization of progeny lines shows plants deficient in all six SPO11-1 copies fail to undergo chromosome synapsis, lack COs and are sterile. In contrast, lines carrying a single copy of any one of the three wild-type homoeologues are phenotypically indistinguishable from unedited plants both in terms of vegetative growth and fertility. However, cytogenetic analysis of the edited plants suggests that homoeologues differ in their ability to generate COs and in the dynamics of synapsis. In addition, we show that the transformation of wheat mutants carrying six edited copies of SPO11-1 with the TaSPO11-1B gene, restores synapsis, CO formation, and fertility and hence opens a route to modifying recombination in this agronomically important crop.
通过植物育种提高作物产量是一项耗时费力的工作,新等位基因的产生受到染色体连锁块和连锁拖曳的限制。减数分裂重组对于通过亲本等位基因的重排产生新的遗传变异至关重要。遗传信息在同源染色体之间的交换发生在交叉(CO)位点,但 CO 频率通常较低且分布不均匀。这种偏差在重组“冷”区造成了连锁拖曳的问题,其中不需要的变异仍然与有用的性状相关联。在植物中,由 SPO11 复合物催化的有丝分裂特异性 DNA 双链断裂启动重组途径,尽管只有约 5%导致 CO 的形成。为了研究 SPO11-1 在小麦减数分裂中的作用,并作为操纵的前奏,我们使用 CRISPR/Cas9 在六倍体小麦的所有三个 SPO11-1 同系物中生成编辑。对后代系的特征分析表明,所有六个 SPO11-1 拷贝缺失的植物不能进行染色体联会,缺乏 CO 且不育。相比之下,携带三个野生型同系物之一的单个拷贝的系在表型上与未经编辑的植物在营养生长和育性方面无法区分。然而,编辑植物的细胞遗传学分析表明,同系物在产生 CO 的能力和联会的动态方面存在差异。此外,我们表明,用 TaSPO11-1B 基因转化携带 SPO11-1 的六个编辑拷贝的小麦突变体,恢复了联会、CO 的形成和育性,从而为修饰这个在农业上重要的作物的重组开辟了一条途径。