Suppr超能文献

OCT 图像视网膜分割的有效准确性得益于散斑噪声减少和边界边缘检测策略。

Effectual accuracy of OCT image retinal segmentation with the aid of speckle noise reduction and boundary edge detection strategy.

机构信息

Computer Engineering & Applications, GLA University, Mathura, UP, India.

出版信息

J Microsc. 2023 Mar;289(3):164-179. doi: 10.1111/jmi.13152. Epub 2023 Jan 8.

Abstract

Optical coherence tomography (OCT) has shown to be a valuable imaging tool in the field of ophthalmology, and it is becoming increasingly relevant in the field of neurology. Several OCT image segmentation methods have been developed previously to segment retinal images, however sophisticated speckle noises with low-intensity restrictions, complex retinal tissues, and inaccurate retinal layer structure remain a challenge to perform effective retinal segmentation. Hence, in this research, complicated speckle noises are removed by using a novel far-flung ratio algorithm in which preprocessing has been done to treat the speckle noise thereby highly decreasing the speckle noise through new similarity and statistical measures. Additionally, a novel haphazard walk and inter-frame flattening algorithms have been presented to tackle the weak object boundaries in OCT images. These algorithms are effective at detecting edges and estimating minimal weighted paths to better diverge, which reduces the time complexity. In addition, the segmentation of OCT images is made simpler by using a novel N-ret layer segmentation approach that executes simultaneous segmentation of various surfaces, ensures unambiguous segmentation across neighbouring layers, and improves segmentation accuracy by using two grey scale values to construct data. Consequently, the novel work outperformed the OCT image segmentation with 98.5% of accuracy.

摘要

光学相干断层扫描(OCT)已被证明是眼科领域一种有价值的成像工具,它在神经科学领域也变得越来越重要。以前已经开发了几种 OCT 图像分割方法来分割视网膜图像,然而,具有低强度限制的复杂斑点噪声、复杂的视网膜组织和不准确的视网膜层结构仍然是实现有效视网膜分割的挑战。因此,在这项研究中,通过使用一种新颖的远距比算法来去除复杂的斑点噪声,该算法对预处理进行了处理,从而通过新的相似性和统计措施高度降低了斑点噪声。此外,还提出了一种新的随机游走和帧间平滑算法来解决 OCT 图像中弱目标边界的问题。这些算法在检测边缘和估计最小加权路径方面非常有效,可以更好地发散,从而降低时间复杂度。此外,还使用一种新颖的 N-层分割方法简化了 OCT 图像的分割,该方法执行了多个表面的同时分割,确保了相邻层之间的明确分割,并通过使用两个灰度值来构建数据来提高分割精度。因此,该新方法的准确率达到了 98.5%,优于 OCT 图像分割。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验