Suppr超能文献

光学相干断层扫描图像中视网膜层的自动标注。

Automatic Annotation of Retinal Layers in Optical Coherence Tomography Images.

机构信息

Department of Computer Science, Brunel University London, Kingston Lane, Uxbridge, UB83PH, UK.

出版信息

J Med Syst. 2019 Nov 13;43(12):336. doi: 10.1007/s10916-019-1452-9.

Abstract

Early diagnosis of retinal OCT images has been shown to curtail blindness and visual impairments. However, the advancement of ophthalmic imaging technologies produces an ever-growing scale of retina images, both in volume and variety, which overwhelms the ophthalmologist ability to segment these images. While many automated methods exist, speckle noise and intensity inhomogeneity negatively impacts the performance of these methods. We present a comprehensive and fully automatic method for annotation of retinal layers in OCT images comprising of fuzzy histogram hyperbolisation (FHH) and graph cut methods to segment 7 retinal layers across 8 boundaries. The FHH handles speckle noise and inhomogeneity in the preprocessing step. Then the normalised vertical image gradient, and it's inverse to represent image intensity in calculating two adjacency matrices and then the FHH reassigns the edge-weights to make edges along retinal boundaries have a low cost, and graph cut method identifies the shortest-paths (layer boundaries). The method is evaluated on 150 B-Scan images, 50 each from the temporal, foveal and nasal regions were used in our study. Promising experimental results have been achieved with high tolerance and adaptability to contour variance and pathological inconsistency of the retinal layers in all (temporal, foveal and nasal) regions. The method also achieves high accuracy, sensitivity, and Dice score of 0.98360, 0.9692 and 0.9712, respectively in segmenting the retinal nerve fibre layer. The annotation can facilitate eye examination by providing accurate results. The integration of the vertical gradients into the graph cut framework, which captures the unique characteristics of retinal structures, is particularly useful in finding the actual minimum paths across multiple retinal layer boundaries. Prior knowledge plays an integral role in image segmentation.

摘要

视网膜 OCT 图像的早期诊断已被证明可以减少失明和视力障碍。然而,眼科成像技术的进步使得视网膜图像的规模不断扩大,无论是在数量还是种类上,都超过了眼科医生对这些图像进行分割的能力。虽然有许多自动化方法,但斑点噪声和强度不均匀性会对这些方法的性能产生负面影响。我们提出了一种全面的、全自动的 OCT 图像视网膜层注释方法,该方法由模糊直方图双曲线化(FHH)和图割方法组成,用于分割 7 个视网膜层和 8 个边界。FHH 在预处理步骤中处理斑点噪声和不均匀性。然后使用归一化的垂直图像梯度及其倒数来计算两个邻接矩阵中的图像强度,然后 FHH 重新分配边缘权重,使边缘沿着视网膜边界的成本较低,图割方法确定最短路径(层边界)。该方法在 150 个 B 扫描图像上进行了评估,我们的研究中使用了每个部位 50 个颞部、中央凹和鼻侧的图像。该方法在所有(颞部、中央凹和鼻侧)部位都表现出了很高的容忍度和适应性,能够处理视网膜层轮廓变化和病理一致性的问题。该方法在分割视网膜神经纤维层时还实现了很高的准确性、灵敏度和 Dice 得分,分别为 0.98360、0.9692 和 0.9712。该注释可以通过提供准确的结果来辅助眼部检查。将垂直梯度集成到图割框架中,捕捉到视网膜结构的独特特征,特别有助于找到跨越多个视网膜层边界的实际最小路径。先验知识在图像分割中起着不可或缺的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05b1/6853852/0cbd358f55b7/10916_2019_1452_Fig1_HTML.jpg

相似文献

1
Automatic Annotation of Retinal Layers in Optical Coherence Tomography Images.
J Med Syst. 2019 Nov 13;43(12):336. doi: 10.1007/s10916-019-1452-9.
3
Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach.
IEEE Trans Med Imaging. 2011 Feb;30(2):484-96. doi: 10.1109/TMI.2010.2087390. Epub 2010 Oct 14.
5
Automated layer segmentation of optical coherence tomography images.
IEEE Trans Biomed Eng. 2010 Oct;57(10):2605-8. doi: 10.1109/TBME.2010.2055057. Epub 2010 Jun 28.
6
Automated layer segmentation of macular OCT images via graph-based SLIC superpixels and manifold ranking approach.
Comput Med Imaging Graph. 2017 Jan;55:42-53. doi: 10.1016/j.compmedimag.2016.07.006. Epub 2016 Jul 25.
7
Speckle Reduction in 3D Optical Coherence Tomography of Retina by A-Scan Reconstruction.
IEEE Trans Med Imaging. 2016 Oct;35(10):2270-2279. doi: 10.1109/TMI.2016.2556080. Epub 2016 Apr 20.
8
Intra-retinal layer segmentation in optical coherence tomography images.
Opt Express. 2009 Dec 21;17(26):23719-28. doi: 10.1364/OE.17.023719.

引用本文的文献

1
An Intelligent Mechanism to Detect Multi-Factor Skin Cancer.
Diagnostics (Basel). 2024 Jun 26;14(13):1359. doi: 10.3390/diagnostics14131359.
3
Synthetic OCT data in challenging conditions: three-dimensional OCT and presence of abnormalities.
Med Biol Eng Comput. 2022 Jan;60(1):189-203. doi: 10.1007/s11517-021-02469-w. Epub 2021 Nov 18.

本文引用的文献

1
Automatic Choroidal Layer Segmentation Using Markov Random Field and Level Set Method.
IEEE J Biomed Health Inform. 2017 Nov;21(6):1694-1702. doi: 10.1109/JBHI.2017.2675382. Epub 2017 Mar 20.
2
Four challenges in medical image analysis from an industrial perspective.
Med Image Anal. 2016 Oct;33:44-49. doi: 10.1016/j.media.2016.06.023. Epub 2016 Jun 16.
3
Real-Time Automatic Segmentation of Optical Coherence Tomography Volume Data of the Macular Region.
PLoS One. 2015 Aug 10;10(8):e0133908. doi: 10.1371/journal.pone.0133908. eCollection 2015.
4
Retina layer segmentation using kernel graph cuts and continuous max-flow.
Opt Express. 2015 Mar 23;23(6):7366-84. doi: 10.1364/OE.23.007366.
5
Retinal blood vessels extraction using probabilistic modelling.
Health Inf Sci Syst. 2014 Jan 27;2:2. doi: 10.1186/2047-2501-2-2. eCollection 2014.
6
3-D Stent Detection in Intravascular OCT Using a Bayesian Network and Graph Search.
IEEE Trans Med Imaging. 2015 Jul;34(7):1549-1561. doi: 10.1109/TMI.2015.2405341. Epub 2015 Feb 24.
7
Segmentation of the blood vessels and optic disk in retinal images.
IEEE J Biomed Health Inform. 2014 Nov;18(6):1874-86. doi: 10.1109/JBHI.2014.2302749. Epub 2014 Jan 27.
8
The prevalence of age-related eye diseases and visual impairment in aging: current estimates.
Invest Ophthalmol Vis Sci. 2013 Dec 13;54(14):ORSF5-ORSF13. doi: 10.1167/iovs.13-12789.
9
Retinal layer segmentation of macular OCT images using boundary classification.
Biomed Opt Express. 2013 Jun 14;4(7):1133-52. doi: 10.1364/BOE.4.001133. Print 2013 Jul 1.
10
Curvature correction of retinal OCTs using graph-based geometry detection.
Phys Med Biol. 2013 May 7;58(9):2925-38. doi: 10.1088/0031-9155/58/9/2925. Epub 2013 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验