Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India.
Abeda Inamdar Senior College, Pune, Maharashtra, India.
Microbiol Spectr. 2022 Dec 21;10(6):e0199422. doi: 10.1128/spectrum.01994-22. Epub 2022 Nov 14.
The increasing frequency of infections caused by multidrug-resistant Klebsiella pneumoniae demands the development of unconventional therapies. Here, we isolated, characterized, and sequenced a phage PG14 that infects and lyses carbapenem-resistant K. pneumoniae G14. Phage PG14 showed morphology similar to the phages belonging to the family . The adsorption curve of phage PG14 showed more than 90% adsorption of phages on a host within 12 min. A latent period of 20 min and a burst size of 47 was observed in the one step growth curve. Phage PG14 is stable at a temperature below 30°C and in the pH range of 6 to 8. The PG14 genome showed no putative genes associated with virulence and antibiotic resistance. Additionally, it has shown lysis against 6 out of 13 isolates tested, suggesting the suitability of this phage for therapeutic applications. Phage PG14 showed more than a 7-log cycle reduction in K. pneumoniae planktonic cells after 24 h of treatment at a multiplicity of infection (MOI) of 10. The phage PG14 showed a significant inhibition and disruption of biofilm produced by G14. The promising results of this study nominate phage PG14 as a potential candidate for phage therapy. Klebsiella pneumoniae is one of the members of the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and species) group of pathogens and is responsible for nosocomial infections. The global increase of carbapenem-resistant K. pneumoniae has developed a substantial clinical threat because of the dearth of therapeutic choices available. K. pneumoniae is one of the commonly found bacteria responsible for biofilm-related infections. Due to the inherent tolerance of biofilms to antibiotics, there is a growing need to develop alternative strategies to control biofilm-associated infections. This study characterized a novel bacteriophage PG14, which can inhibit and disrupt the K. pneumoniae biofilm. The genome of phage PG14 does not show any putative genes related to antimicrobial resistance or virulence, making it a potential candidate for phage therapy. This study displays the possibility of treating infections caused by multidrug-resistant (MDR) isolates of K. pneumoniae using phage PG14 alone or combined with other therapeutic agents.
越来越多的耐多药肺炎克雷伯菌感染需要开发非常规疗法。在这里,我们分离、鉴定和测序了一种可以感染和裂解耐碳青霉烯肺炎克雷伯菌 G14 的噬菌体 PG14。噬菌体 PG14 的形态与属于. 科的噬菌体相似。噬菌体 PG14 的吸附曲线表明,在 12 分钟内,噬菌体对宿主的吸附率超过 90%。一步生长曲线显示潜伏期为 20 分钟,爆发量为 47。噬菌体 PG14 在低于 30°C 的温度和 pH 值为 6 到 8 的范围内稳定。PG14 基因组没有显示与毒力和抗生素耐药性相关的假定基因。此外,它对测试的 13 个分离株中的 6 个表现出裂解作用,表明该噬菌体适合治疗应用。在感染复数(MOI)为 10 时,噬菌体 PG14 在 24 小时的治疗后,对肺炎克雷伯菌浮游细胞的减少量超过 7 个对数循环。噬菌体 PG14 对 G14 产生的生物膜表现出显著的抑制和破坏作用。这项研究的有希望的结果表明,噬菌体 PG14 是噬菌体治疗的潜在候选者。肺炎克雷伯菌是 ESKAPE(粪肠球菌、金黄色葡萄球菌、肺炎克雷伯菌、鲍曼不动杆菌、铜绿假单胞菌和 种)病原体群中的成员之一,是医院感染的罪魁祸首。由于可供选择的治疗方法有限,全球耐碳青霉烯肺炎克雷伯菌的增加带来了严重的临床威胁。肺炎克雷伯菌是一种常见的引起生物膜相关感染的细菌。由于生物膜对抗生素的固有耐受性,因此需要开发替代策略来控制生物膜相关感染。本研究鉴定了一种新型噬菌体 PG14,它可以抑制和破坏肺炎克雷伯菌生物膜。噬菌体 PG14 的基因组没有显示任何与抗生素耐药性或毒力相关的假定基因,使其成为噬菌体治疗的潜在候选者。这项研究显示了单独使用噬菌体 PG14 或与其他治疗剂联合使用来治疗耐多药(MDR)肺炎克雷伯菌分离株引起的感染的可能性。