Surface Physics and Catalysis (Surf Cat) Section, Department of Physics, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark.
CatTheory Center, Department of Physics, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark.
Angew Chem Int Ed Engl. 2023 Jan 16;62(3):e202214383. doi: 10.1002/anie.202214383. Epub 2022 Dec 13.
Zero-gap anion exchange membrane (AEM)-based CO electrolysis is a promising technology for CO production, however, their performance at elevated current densities still suffers from the low local CO concentration due to heavy CO neutralization. Herein, via modulating the CO feed mode and quantitative analyzing CO utilization with the aid of mass transport modeling, we develop a descriptor denoted as the surface-accessible CO concentration ([CO ] ), which enables us to indicate the transient state of the local [CO ]/[OH ] ratio and helps define the limits of CO -to-CO conversion. To enrich the [CO ] , we developed three general strategies: (1) increasing catalyst layer thickness, (2) elevating CO pressure, and (3) applying a pulsed electrochemical (PE) method. Notably, an optimized PE method allows to keep the [CO ] at a high level by utilizing the dynamic balance period of CO neutralization. A maximum j of 368±28 mA cm was achieved using a commercial silver catalyst.
零间隙阴离子交换膜(AEM)-基于 CO 电解是一种很有前途的 CO 生产技术,然而,由于 CO 中和作用严重,它们在高电流密度下的性能仍然受到局部 CO 浓度低的影响。在此,通过调节 CO 进料方式并借助传质建模进行定量分析 CO 利用率,我们开发了一个表示为表面可及 CO 浓度([CO ])的描述符,它可以指示局部[CO ]/[OH ]比的瞬态状态,并有助于确定 CO 到 CO 转化的极限。为了丰富[CO ],我们开发了三种通用策略:(1)增加催化剂层厚度,(2)提高 CO 压力,和(3)施加脉冲电化学(PE)方法。值得注意的是,优化的 PE 方法可以通过利用 CO 中和的动态平衡周期将[CO ]保持在较高水平。使用商业银催化剂可实现最大 j 为 368±28 mA·cm 。