Miyazato Itsuki, Tanaka Yuzuru, Takahashi Keisuke
Graduate School of Engineering, Hokkaido University, N-13, W-8, Sapporo 060-8628, Japan.
J Phys Condens Matter. 2018 Feb 14;30(6):06LT01. doi: 10.1088/1361-648X/aaa471.
Two-dimensional (2D) magnets are explored in terms of data science and first principle calculations. Machine learning determines four descriptors for predicting the magnetic moments of 2D materials within reported 216 2D materials data. With the trained machine, 254 2D materials are predicted to have high magnetic moments. First principle calculations are performed to evaluate the predicted 254 2D materials where eight undiscovered stable 2D materials with high magnetic moments are revealed. The approach taken in this work indicates that undiscovered materials can be surfaced by utilizing data science and materials data, leading to an innovative way of discovering hidden materials.
从数据科学和第一性原理计算的角度对二维(2D)磁体进行了研究。机器学习确定了四个描述符,用于预测已报道的216种二维材料数据中的二维材料的磁矩。利用训练好的机器,预测有254种二维材料具有高磁矩。进行第一性原理计算以评估预测的254种二维材料,发现了8种未被发现的具有高磁矩的稳定二维材料。这项工作所采用的方法表明,利用数据科学和材料数据可以发现未被发现的材料,从而带来一种发现隐藏材料的创新方法。