Suppr超能文献

利用机器学习和第一性原理计算加速隐藏二维磁体的发现

Accelerating the discovery of hidden two-dimensional magnets using machine learning and first principle calculations.

作者信息

Miyazato Itsuki, Tanaka Yuzuru, Takahashi Keisuke

机构信息

Graduate School of Engineering, Hokkaido University, N-13, W-8, Sapporo 060-8628, Japan.

出版信息

J Phys Condens Matter. 2018 Feb 14;30(6):06LT01. doi: 10.1088/1361-648X/aaa471.

Abstract

Two-dimensional (2D) magnets are explored in terms of data science and first principle calculations. Machine learning determines four descriptors for predicting the magnetic moments of 2D materials within reported 216 2D materials data. With the trained machine, 254 2D materials are predicted to have high magnetic moments. First principle calculations are performed to evaluate the predicted 254 2D materials where eight undiscovered stable 2D materials with high magnetic moments are revealed. The approach taken in this work indicates that undiscovered materials can be surfaced by utilizing data science and materials data, leading to an innovative way of discovering hidden materials.

摘要

从数据科学和第一性原理计算的角度对二维(2D)磁体进行了研究。机器学习确定了四个描述符,用于预测已报道的216种二维材料数据中的二维材料的磁矩。利用训练好的机器,预测有254种二维材料具有高磁矩。进行第一性原理计算以评估预测的254种二维材料,发现了8种未被发现的具有高磁矩的稳定二维材料。这项工作所采用的方法表明,利用数据科学和材料数据可以发现未被发现的材料,从而带来一种发现隐藏材料的创新方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验