Suppr超能文献

基于腰椎磁共振成像的深度学习算法预测经椎间孔硬膜外类固醇注射治疗慢性腰骶神经根性疼痛的疗效。

Deep Learning Algorithm Trained on Lumbar Magnetic Resonance Imaging to Predict Outcomes of Transforaminal Epidural Steroid Injection for Chronic Lumbosacral Radicular Pain.

机构信息

Department of Business Administration, School of Business, Yeungnam University, Gyeongsan-si, Republic of Korea.

Department of Rehabilitation Medicine, College of Medicine, Yeungnam University, Daegu, Republic of Korea.

出版信息

Pain Physician. 2022 Nov;25(8):587-592.

Abstract

BACKGROUND

Transforaminal epidural steroid injections (TFESI) are widely used to alleviate lumbosacral radicular pain. Knowledge of the therapeutic outcomes of TFESI allows clinicians to elucidate therapeutic plans for managing lumbosacral radicular pain. Deep learning (DL) can outperform traditional machine learning techniques and learn from unstructured and perceptual data. A convolutional neural network (CNN) is a representative DL model.

OBJECTIVES

We developed and investigated the accuracy of a CNN model for predicting therapeutic outcomes after TFESI for controlling chronic lumbosacral radicular pain using T2-weighted sagittal lumbar spine magnetic resonance (MR) images as input data.

STUDY DESIGN

Imaging study using DL.

SETTING

At the spine center of a university hospital.

METHODS

We collected whole T2-weighted sagittal lumbar spine MR images from 503 patients with chronic lumbosacral radicular pain due to a herniated lumbar disc (HLD) and spinal stenosis. A "good outcome" was defined as a >= 50% reduction in the numeric rating scale (NRS-11) score at 2 months after TFESI vs the pretreatment NRS-11 score. A "poor outcome" was defined as a < 50% decrease in the NRS-11 score at 2 months after TFESI vs pretreatment.

RESULTS

In the prediction of therapeutic outcomes after TFESI on the validation dataset, the area under the curve was 0.827.

LIMITATIONS

Our study was limited in that we used a small amount of lumbar spine MR imaging data to train the CNN model.

CONCLUSIONS

We demonstrated that a CNN model trained, using whole lumbar spine sagittal T2-weighted MR images, could help determine outcomes after TFESI in patients with chronic lumbosacral radicular pain due to an HLD or spinal stenosis.

摘要

背景

经椎间孔硬膜外类固醇注射(TFESI)广泛用于缓解腰骶神经根痛。了解 TFESI 的治疗效果可以帮助临床医生阐明治疗腰骶神经根痛的治疗方案。深度学习(DL)可以超越传统的机器学习技术,并从非结构化和感知数据中学习。卷积神经网络(CNN)是一种代表性的 DL 模型。

目的

我们开发并研究了一种 CNN 模型的准确性,该模型使用 T2 加权矢状腰椎磁共振(MR)图像作为输入数据,预测 TFESI 治疗慢性腰骶神经根痛的治疗效果。

研究设计

使用 DL 的影像学研究。

设置

在大学医院的脊柱中心。

方法

我们从 503 例因腰椎间盘突出症(HLD)和椎管狭窄症引起的慢性腰骶神经根痛患者中收集了整个 T2 加权矢状腰椎 MR 图像。“良好结果”定义为 TFESI 后 2 个月的数字评分量表(NRS-11)评分与治疗前 NRS-11 评分相比降低>=50%。“不良结果”定义为 TFESI 后 2 个月的 NRS-11 评分较治疗前降低<50%。

结果

在验证数据集上对 TFESI 后治疗效果的预测中,曲线下面积为 0.827。

局限性

我们的研究受到限制,因为我们使用了少量的腰椎 MR 成像数据来训练 CNN 模型。

结论

我们证明了使用整个腰椎矢状 T2 加权 MR 图像训练的 CNN 模型可以帮助确定因 HLD 或椎管狭窄症引起的慢性腰骶神经根痛患者 TFESI 后的治疗效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验