Suppr超能文献

深度学习辅助腰椎间盘分割:系统评价和荟萃分析。

Deep learning assisted segmentation of the lumbar intervertebral disc: a systematic review and meta-analysis.

机构信息

Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, 5 JingYuan Road, Shijingshan District, Beijing, 100043, China.

出版信息

J Orthop Surg Res. 2024 Aug 21;19(1):496. doi: 10.1186/s13018-024-05002-5.

Abstract

BACKGROUND

In recent years, deep learning (DL) technology has been increasingly used for the diagnosis and treatment of lumbar intervertebral disc (IVD) degeneration. This study aims to evaluate the performance of DL technology for IVD segmentation in magnetic resonance (MR) images and explore improvement strategies.

METHODS

We developed a PRISMA systematic review protocol and systematically reviewed studies that used DL algorithm frameworks to perform IVD segmentation based on MR images published up to April 10, 2024. The Quality Assessment of Diagnostic Accuracy Studies-2 tool was used to assess methodological quality, and the pooled dice similarity coefficient (DSC) score and Intersection over Union (IoU) were calculated to evaluate segmentation performance.

RESULTS

45 studies were included in this systematic review, of which 16 provided complete segmentation performance data and were included in the quantitative meta-analysis. The results indicated that DL models showed satisfactory IVD segmentation performance, with a pooled DSC of 0.900 (95% confidence interval [CI]: 0.887-0.914) and IoU of 0.863 (95% CI: 0.730-0.995). However, the subgroup analysis did not show significant effects of factors on IVD segmentation performance, including network dimensionality, algorithm type, publication year, number of patients, scanning direction, data augmentation, and cross-validation.

CONCLUSIONS

This study highlights the potential of DL technology in IVD segmentation and its further applications. However, due to the heterogeneity in algorithm frameworks and result reporting of the included studies, the conclusions should be interpreted with caution. Future research should focus on training generalized models on large-scale datasets to enhance their clinical application.

摘要

背景

近年来,深度学习(DL)技术越来越多地应用于腰椎间盘(IVD)退变的诊断和治疗。本研究旨在评估 DL 技术在磁共振(MR)图像中进行 IVD 分割的性能,并探索改进策略。

方法

我们制定了 PRISMA 系统评价方案,并系统地回顾了截至 2024 年 4 月 10 日使用基于 DL 算法框架基于 MR 图像进行 IVD 分割的研究。使用质量评估诊断准确性研究-2 工具评估方法学质量,并计算了合并的骰子相似性系数(DSC)评分和交并比(IoU)以评估分割性能。

结果

本系统评价共纳入 45 项研究,其中 16 项提供了完整的分割性能数据,纳入了定量荟萃分析。结果表明,DL 模型在 IVD 分割方面表现出令人满意的性能,合并的 DSC 为 0.900(95%置信区间[CI]:0.887-0.914),IoU 为 0.863(95%CI:0.730-0.995)。然而,亚组分析并未显示出各种因素对 IVD 分割性能的显著影响,包括网络维度、算法类型、发表年份、患者数量、扫描方向、数据增强和交叉验证。

结论

本研究强调了 DL 技术在 IVD 分割及其进一步应用中的潜力。然而,由于纳入研究的算法框架和结果报告存在异质性,结论应谨慎解释。未来的研究应专注于在大规模数据集上训练通用模型,以增强其临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4db/11337880/73b704ec2199/13018_2024_5002_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验