Pan Jie, Huang Jingwei, Cheng Gengdong, Zeng Yong
Concordia Institute for Information Systems Engineering, Concordia University, Montreal, H3G 1M8, Quebec, Canada.
Department of Engineering Management & Systems Engineering, Old Dominion University, Norfolk, 23529, Virginia, United States.
Neural Netw. 2023 Jan;157:288-304. doi: 10.1016/j.neunet.2022.10.022. Epub 2022 Oct 29.
This paper proposes, implements, and evaluates a reinforcement learning (RL)-based computational framework for automatic mesh generation. Mesh generation plays a fundamental role in numerical simulations in the area of computer aided design and engineering (CAD/E). It is identified as one of the critical issues in the NASA CFD Vision 2030 Study. Existing mesh generation methods suffer from high computational complexity, low mesh quality in complex geometries, and speed limitations. These methods and tools, including commercial software packages, are typically semiautomatic and they need inputs or help from human experts. By formulating the mesh generation as a Markov decision process (MDP) problem, we are able to use a state-of-the-art reinforcement learning (RL) algorithm called "soft actor-critic" to automatically learn from trials the policy of actions for mesh generation. The implementation of this RL algorithm for mesh generation allows us to build a fully automatic mesh generation system without human intervention and any extra clean-up operations, which fills the gap in the existing mesh generation tools. In the experiments to compare with two representative commercial software packages, our system demonstrates promising performance with respect to scalability, generalizability, and effectiveness.
本文提出、实现并评估了一种基于强化学习(RL)的自动网格生成计算框架。网格生成在计算机辅助设计与工程(CAD/E)领域的数值模拟中起着基础性作用。它被确定为美国国家航空航天局(NASA)计算流体力学(CFD)2030研究中的关键问题之一。现有的网格生成方法存在计算复杂度高、复杂几何形状中网质量低以及速度限制等问题。这些方法和工具,包括商业软件包,通常是半自动的,需要人类专家的输入或帮助。通过将网格生成表述为马尔可夫决策过程(MDP)问题,我们能够使用一种名为“软演员-评论家”的先进强化学习(RL)算法,从试验中自动学习网格生成的动作策略。这种用于网格生成的RL算法的实现使我们能够构建一个无需人工干预和任何额外清理操作的全自动网格生成系统,填补了现有网格生成工具的空白。在与两个代表性商业软件包进行比较的实验中,我们的系统在可扩展性、通用性和有效性方面展现出了良好的性能。