Suppr超能文献

基于最大熵强化学习的动态环境自适应四足平衡控制。

Adaptive Quadruped Balance Control for Dynamic Environments Using Maximum-Entropy Reinforcement Learning.

机构信息

School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China.

出版信息

Sensors (Basel). 2021 Sep 2;21(17):5907. doi: 10.3390/s21175907.

Abstract

External disturbance poses the primary threat to robot balance in dynamic environments. This paper provides a learning-based control architecture for quadrupedal self-balancing, which is adaptable to multiple unpredictable scenes of external continuous disturbance. Different from conventional methods which construct analytical models which explicitly reason the balancing process, our work utilized reinforcement learning and artificial neural network to avoid incomprehensible mathematical modeling. The control policy is composed of a neural network and a Tanh Gaussian policy, which implicitly establishes the fuzzy mapping from proprioceptive signals to action commands. During the training process, the maximum-entropy method (soft actor-critic algorithm) is employed to endow the policy with powerful exploration and generalization ability. The trained policy is validated in both simulations and realistic experiments with a customized quadruped robot. The results demonstrate that the policy can be easily transferred to the real world without elaborate configurations. Moreover, although this policy is trained in merely one specific vibration condition, it demonstrates robustness under conditions that were never encountered during training.

摘要

外部干扰是机器人在动态环境中保持平衡的主要威胁。本文提出了一种基于学习的四足自平衡控制架构,能够适应多种外部持续干扰的不可预测场景。与传统方法构建显式推理平衡过程的分析模型不同,我们的工作利用强化学习和人工神经网络来避免难以理解的数学建模。控制策略由神经网络和 Tanh 高斯策略组成,隐式地建立了从本体感受信号到动作命令的模糊映射。在训练过程中,最大熵方法(软 actor-critic 算法)用于赋予策略强大的探索和泛化能力。所训练的策略在定制的四足机器人的模拟和真实实验中得到了验证。结果表明,该策略可以轻松转移到真实世界,而无需进行精心配置。此外,尽管该策略是在仅一种特定的振动条件下进行训练的,但它在训练过程中从未遇到过的条件下表现出了鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/026e/8434611/773dfa5c4c2b/sensors-21-05907-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验