Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016, India.
Cell Commun Signal. 2022 Nov 14;20(1):179. doi: 10.1186/s12964-022-00987-0.
The aim of the present study was to determine the role of individual PHLPP isoforms in insulin signaling and insulin resistance in neuronal cells.
PHLPP isoforms were either silenced or overexpressed individually, and the effects were observed on individual Akt isoforms, AS160 and on neuronal glucose uptake, under insulin sensitive and resistant conditions. To determine PHLPP regulation itself, we tested effect of scaffold protein, Scribble, on PHLPP isoforms and neuronal glucose uptake.
We observed elevated expression of both PHLPP1 and PHLPP2 in insulin resistant neuronal cells (Neuro-2A, mouse neuroblastoma; SHSY-5Y, human neuroblastoma) as well as in the whole brain lysates of high-fat-diet mediated diabetic mice. In insulin sensitive condition, PHLPP isoforms differentially affected activation of all Akt isoforms, wherein PHLPP1 regulated serine phosphorylation of Akt2 and Akt3, while PHLPP2 regulated Akt1 and Akt3. This PHLPP mediated Akt isoform specific regulation activated AS160 affecting glucose uptake. Under insulin resistant condition, a similar trend of results were observed in Akt isoforms, AS160 and glucose uptake. Over-expressed PHLPP isoforms combined with elevated endogenous expression under insulin resistant condition drastically affected downstream signaling, reducing neuronal glucose uptake. No compensation was observed amongst PHLPP isoforms under all conditions tested, indicating independent roles and pointing towards possible scaffolding interactions behind isoform specificity. Silencing of Scribble, a scaffolding protein known to interact with PHLPP, affected cellular localization of both PHLPP1 and PHLPP2, and caused increase in glucose uptake.
PHLPP isoforms play independent roles via Scribble in regulating Akt isoforms differentially, affecting AS160 and neuronal glucose uptake. Video abstract.
本研究旨在确定个体 PHLLP 同工型在神经元细胞胰岛素信号和胰岛素抵抗中的作用。
单独沉默或过表达 PHLLP 同工型,并观察它们在胰岛素敏感和抵抗条件下对各 Akt 同工型、AS160 和神经元葡萄糖摄取的影响。为了确定 PHLLP 的自身调节,我们测试了支架蛋白 Scribble 对 PHLLP 同工型和神经元葡萄糖摄取的影响。
我们观察到胰岛素抵抗神经元细胞(Neuro-2A,小鼠神经母细胞瘤;SHSY-5Y,人神经母细胞瘤)以及高脂肪饮食诱导的糖尿病小鼠大脑总蛋白裂解物中 PHLLP1 和 PHLLP2 的表达升高。在胰岛素敏感条件下,PHLLP 同工型对所有 Akt 同工型的激活有不同的影响,其中 PHLLP1 调节 Akt2 和 Akt3 的丝氨酸磷酸化,而 PHLLP2 调节 Akt1 和 Akt3。这种 PHLLP 介导的 Akt 同工型特异性调节激活了 AS160,影响葡萄糖摄取。在胰岛素抵抗条件下,Akt 同工型、AS160 和葡萄糖摄取也观察到类似的趋势。在胰岛素抵抗条件下,过表达的 PHLLP 同工型与升高的内源性表达相结合,严重影响下游信号,降低神经元葡萄糖摄取。在所有测试条件下,PHLLP 同工型之间没有观察到代偿,表明它们具有独立的作用,并指出同工型特异性背后可能存在支架相互作用。已知与 PHLLP 相互作用的支架蛋白 Scribble 的沉默,影响了 PHLLP1 和 PHLLP2 的细胞定位,并导致葡萄糖摄取增加。
PHLLP 同工型通过 Scribble 发挥独立作用,差异调节 Akt 同工型,影响 AS160 和神经元葡萄糖摄取。视频摘要。