School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China.
Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
Phys Chem Chem Phys. 2022 Nov 23;24(45):28047-28054. doi: 10.1039/d2cp04615f.
Mass spectrometry measurements coupled with classical molecular dynamics (MD) simulations have been conducted in recent years to understand the final stage of ion formation in electrospray ionization (ESI). Here, to characterize the ion formation mechanism in the recently developed droplet-assisted ionization (DAI) source, MD simulations with various conditions (solute number, temperature, ions, composition) were performed to help explain DAI-based measurements. The specific binding ability of cortisone with preformed ions (ions of sodium, cesium and iodide) in evaporating nanodroplets makes the ion formation process characteristic of both the ion evaporation and charge residue models (IEM and CRM, respectively). Most preformed ions are ejected with dozens of solvent molecules to form gas-phase ions by IEM, while clusters of one or more cortisone molecules with one or more preformed ions remain in the evaporating droplet to form gas-phase ions by CRM. As the ratio of cortisone molecules to preformed ions increases, the number of preformed ions held in the droplet without ejection by the IEM increases. In other words, increasing the molecular solute to preformed ion ratio in the droplet increases the fraction of gas-phase ions formed by CRM relative to IEM. The increase in CRM relative to IEM is accompanied by an increase in the calculated activation energy barrier, which can explain the activation energy measurements by DAI, where droplets without preformed ions exhibit higher activation energies for gas-phase ion formation than droplets containing large numbers of preformed ions.
近年来,质谱测量技术与经典分子动力学(MD)模拟相结合,用于理解电喷雾电离(ESI)中离子形成的最终阶段。在这里,为了表征最近开发的液滴辅助电离(DAI)源中的离子形成机制,进行了具有各种条件(溶质数量、温度、离子、组成)的 MD 模拟,以帮助解释基于 DAI 的测量。皮质酮与预形成离子(钠、铯和碘离子)的特定结合能力使离子形成过程具有离子蒸发和电荷残留物模型(分别为 IEM 和 CRM)的特征。大多数预形成离子通过 IEM 与数十个溶剂分子一起被喷射出去,形成气相离子,而一个或多个皮质酮分子与一个或多个预形成离子的簇则通过 CRM 留在蒸发的液滴中形成气相离子。随着皮质酮分子与预形成离子的比例增加,通过 IEM 保持在液滴中而不被喷射出的预形成离子数量增加。换句话说,增加液滴中分子溶质与预形成离子的比例会增加 CRM 形成的气相离子与 IEM 形成的气相离子的比例。CRM 相对于 IEM 的增加伴随着计算的活化能垒的增加,这可以解释 DAI 的活化能测量,其中没有预形成离子的液滴表现出比含有大量预形成离子的液滴更高的气相离子形成活化能。