Suppr超能文献

两种不同的磷酯酶 C(Isc1 和 Pgc1)协同调节线粒体功能。

Two Different Phospholipases C, Isc1 and Pgc1, Cooperate To Regulate Mitochondrial Function.

机构信息

Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.

Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.

出版信息

Microbiol Spectr. 2022 Dec 21;10(6):e0248922. doi: 10.1128/spectrum.02489-22. Epub 2022 Nov 15.

Abstract

The absence of Isc1, the yeast homologue of mammalian neutral sphingomyelinase type 2, leads to severe mitochondrial dysfunction. We show that the deletion of another type C phospholipase, the phosphatidylglycerol (PG)-specific phospholipase Pgc1, rescues this defect. Phosphatidylethanolamine (PE) levels and cytochrome oxidase activity, which were reduced in Δ cells, were restored to wild-type levels in the Δ Δ mutant. The Pgc1 substrate PG inhibited the activities of Isc1 and the phosphatidylserine decarboxylase Psd1, an enzyme crucial for PE biosynthesis. We also identify a mechanism by which the balance between the current demand for PG and its consumption is controlled. We document that the product of PG hydrolysis, diacylglycerol, competes with the substrate of PG-phosphate synthase, Pgs1, and thereby inhibits the biosynthesis of excess PG. This feedback loop does not work in the absence of Pgc1, which catalyzes PG degradation. Finally, Pgc1 activity is partially inhibited by products of Isc1-mediated hydrolysis. The described functional interconnection of the two phospholipases contributes significantly to lipid homeostasis throughout the cellular architecture. In eukaryotic cells, mitochondria are constantly adapting to changes in the biological activity of the cell, i.e., changes in nutrient availability and environmental stresses. We propose a model in which this adaptation is mediated by lipids. Specifically, we show that mitochondrial phospholipids regulate the biosynthesis of cellular sphingolipids and vice versa. To do this, lipids move by free diffusion, which does not require energy and works under any condition. This model represents a simple way for the cell to coordinate mitochondrial structure and performance with the actual needs of overall cellular metabolism. Its simplicity makes it a universally applicable principle of cellular regulation.

摘要

Isc1 的缺失,酵母同源物哺乳动物中性鞘磷脂酶 2,导致严重的线粒体功能障碍。我们表明,另一种类型 C 磷脂酶,即磷脂酰甘油 (PG)-特异性磷脂酶 Pgc1 的缺失,可挽救此缺陷。在Δ细胞中减少的磷脂酰乙醇胺 (PE) 水平和细胞色素氧化酶活性在ΔΔ突变体中恢复到野生型水平。PG 的 Pgc1 底物抑制了 Isc1 和磷脂酰丝氨酸脱羧酶 Psd1 的活性,后者是 PE 生物合成的关键酶。我们还确定了一种控制当前对 PG 的需求与其消耗之间平衡的机制。我们证明 PG 水解的产物二酰基甘油与 PG-磷酸合酶的底物 Pgs1 竞争,从而抑制了过量 PG 的生物合成。在没有催化 PG 降解的 Pgc1 的情况下,这种反馈环不起作用。最后,Isc1 介导的水解产物部分抑制了 Pgc1 的活性。这两种磷脂酶的描述性功能连接极大地促进了整个细胞结构中的脂质平衡。在真核细胞中,线粒体不断适应细胞生物活性的变化,即营养物质可用性和环境压力的变化。我们提出了一个模型,其中这种适应是由脂质介导的。具体来说,我们表明线粒体磷脂调节细胞鞘磷脂的生物合成,反之亦然。为此,脂质通过自由扩散移动,这不需要能量,并且在任何条件下都有效。该模型代表了细胞协调线粒体结构和性能与整体细胞代谢实际需求的一种简单方法。其简单性使其成为细胞调节的普遍适用原则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea51/9769635/b023f50452de/spectrum.02489-22-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验