Suppr超能文献

一种一体化生物启发式神经网络。

An All-in-One Bioinspired Neural Network.

作者信息

Subbulakshmi Radhakrishnan Shiva, Dodda Akhil, Das Saptarshi

机构信息

Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania16802, United States.

Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania16802, United States.

出版信息

ACS Nano. 2022 Dec 27;16(12):20100-20115. doi: 10.1021/acsnano.2c02172. Epub 2022 Nov 15.

Abstract

In spite of recent advancements in artificial neural networks (ANNs), the energy efficiency, multifunctionality, adaptability, and integrated nature of biological neural networks remain largely unimitated by hardware neuromorphic computing systems. Here, we exploit optoelectronic, computing, and programmable memory devices based on emerging two-dimensional (2D) layered materials such as MoS to demonstrate a monolithically integrated, multipixel, and "all-in-one" bioinspired neural network (BNN) capable of sensing, encoding, learning, forgetting, and inferring at minuscule energy expenditure. We also demonstrate learning adaptability and simulate learning challenges under specific synaptic conditions to mimic biological learning. Our findings highlight the potential of in-memory computing and sensing based on emerging 2D materials, devices, and integrated circuits to not only overcome the bottleneck of von Neumann computing in conventional CMOS designs but also to aid in eliminating the peripheral components necessary for competing technologies such as memristors.

摘要

尽管人工神经网络(ANNs)最近取得了进展,但生物神经网络的能量效率、多功能性、适应性和集成特性在很大程度上仍未被硬件神经形态计算系统所模仿。在此,我们利用基于新兴二维(2D)层状材料(如MoS)的光电、计算和可编程存储器件,展示了一种单片集成、多像素且“一体化”的受生物启发的神经网络(BNN),它能够以极小的能量消耗进行传感、编码、学习、遗忘和推理。我们还展示了学习适应性,并在特定突触条件下模拟学习挑战以模仿生物学习。我们的研究结果突出了基于新兴二维材料、器件和集成电路的内存计算与传感的潜力,这不仅能够克服传统CMOS设计中冯·诺依曼计算的瓶颈,还有助于消除诸如忆阻器等竞争技术所需的外围组件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验