Suppr超能文献

用于隐式问答的解缠检索与推理

Disentangled Retrieval and Reasoning for Implicit Question Answering.

作者信息

Liu Qian, Geng Xiubo, Wang Yu, Cambria Erik, Jiang Daxin

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):7804-7815. doi: 10.1109/TNNLS.2022.3220933. Epub 2024 Jun 3.

Abstract

To date, most of the existing open-domain question answering (QA) methods focus on explicit questions where the reasoning steps are mentioned explicitly in the question. In this article, we study implicit QA where the reasoning steps are not evident in the question. Implicit QA is challenging in two aspects. First, evidence retrieval is difficult since there is little overlap between a question and its required evidence. Second, answer inference is difficult since the reasoning strategy is latent in the question. To tackle implicit QA, we propose a systematic solution denoted as DisentangledQA, which disentangles topic, attribute, and reasoning strategy from the implicit question to guide the retrieval and reasoning. Specifically, we disentangle the topic and attribute information from the implicit question to guide evidence retrieval. For answer reasoning, we propose a disentangled reasoning model for answer prediction based on retrieved evidence as well as the latent representation of the reasoning strategy. The disentangled framework empowers each module to focus on a specific latent element in the question, and thus, leads to effective representation learning for them. Experiments on the StrategyQA dataset demonstrate the effectiveness of our method in answering implicit questions, improving performance in evidence retrieval and answering inference by 31.7% and 4.5%, respectively, and achieving the best performance on the official leaderboard. In addition, our method achieved the best performance on the challenging EntityQuestions dataset, indicating the effectiveness in improving general open-domain QA tasks.

摘要

到目前为止,大多数现有的开放域问答(QA)方法都集中在显式问题上,即问题中明确提到了推理步骤。在本文中,我们研究隐式问答,这类问题中的推理步骤并不明显。隐式问答在两个方面具有挑战性。第一,证据检索困难,因为问题与其所需证据之间几乎没有重叠。第二,答案推断困难,因为推理策略在问题中是潜在的。为了解决隐式问答问题,我们提出了一种名为DisentangledQA的系统解决方案,该方案从隐式问题中分离出主题、属性和推理策略,以指导检索和推理。具体来说,我们从隐式问题中分离出主题和属性信息来指导证据检索。对于答案推理,我们基于检索到的证据以及推理策略的潜在表示,提出了一种用于答案预测的解缠推理模型。解缠框架使每个模块能够专注于问题中的特定潜在元素,从而为它们带来有效的表示学习。在StrategyQA数据集上的实验证明了我们的方法在回答隐式问题方面的有效性,分别将证据检索和答案推理的性能提高了31.7%和4.5%,并在官方排行榜上取得了最佳性能。此外,我们的方法在具有挑战性的EntityQuestions数据集上也取得了最佳性能,表明其在改进一般开放域QA任务方面的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验