Suppr超能文献

基于分层自监督学习的口腔内网格扫描中 3D 牙齿分割。

Hierarchical Self-Supervised Learning for 3D Tooth Segmentation in Intra-Oral Mesh Scans.

出版信息

IEEE Trans Med Imaging. 2023 Feb;42(2):467-480. doi: 10.1109/TMI.2022.3222388. Epub 2023 Feb 2.

Abstract

Accurately delineating individual teeth and the gingiva in the three-dimension (3D) intraoral scanned (IOS) mesh data plays a pivotal role in many digital dental applications, e.g., orthodontics. Recent research shows that deep learning based methods can achieve promising results for 3D tooth segmentation, however, most of them rely on high-quality labeled dataset which is usually of small scales as annotating IOS meshes requires intensive human efforts. In this paper, we propose a novel self-supervised learning framework, named STSNet, to boost the performance of 3D tooth segmentation leveraging on large-scale unlabeled IOS data. The framework follows two-stage training, i.e., pre-training and fine-tuning. In pre-training, three hierarchical-level, i.e., point-level, region-level, cross-level, contrastive losses are proposed for unsupervised representation learning on a set of predefined matched points from different augmented views. The pretrained segmentation backbone is further fine-tuned in a supervised manner with a small number of labeled IOS meshes. With the same amount of annotated samples, our method can achieve an mIoU of 89.88%, significantly outperforming the supervised counterparts. The performance gain becomes more remarkable when only a small amount of labeled samples are available. Furthermore, STSNet can achieve better performance with only 40% of the annotated samples as compared to the fully supervised baselines. To the best of our knowledge, we present the first attempt of unsupervised pre-training for 3D tooth segmentation, demonstrating its strong potential in reducing human efforts for annotation and verification.

摘要

准确地描绘三维(3D)口腔内扫描(IOS)网格数据中的个体牙齿和牙龈,在许多数字牙科应用中起着关键作用,例如正畸。最近的研究表明,基于深度学习的方法可以在 3D 牙齿分割方面取得有前景的结果,然而,大多数方法都依赖于高质量的标注数据集,由于标注 IOS 网格需要大量的人工工作,因此此类数据集通常规模较小。在本文中,我们提出了一种新颖的自监督学习框架,名为 STSNet,通过利用大规模未标注的 IOS 数据来提高 3D 牙齿分割的性能。该框架采用两阶段训练,即预训练和微调。在预训练中,我们提出了三个分层级别的点级、区域级和跨级对比损失,用于在一组来自不同增强视图的预定义匹配点上进行无监督表示学习。然后,使用少量标注的 IOS 网格以监督方式进一步微调预训练的分割骨干网络。在相同数量的标注样本下,我们的方法可以达到 89.88%的 mIoU,明显优于监督方法。当只有少量标注样本可用时,性能增益更加显著。此外,与完全监督基线相比,STSNet 仅使用 40%的标注样本就能实现更好的性能。据我们所知,这是首次尝试对 3D 牙齿分割进行无监督预训练,展示了其在减少标注和验证人工工作方面的强大潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验