文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于医学图像分割的具有有限数据标注的自监督区域卷积神经网络

Self-supervised-RCNN for medical image segmentation with limited data annotation.

作者信息

Felfeliyan Banafshe, Forkert Nils D, Hareendranathan Abhilash, Cornel David, Zhou Yuyue, Kuntze Gregor, Jaremko Jacob L, Ronsky Janet L

机构信息

Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada; McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, Canada.

Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada.

出版信息

Comput Med Imaging Graph. 2023 Oct;109:102297. doi: 10.1016/j.compmedimag.2023.102297. Epub 2023 Sep 9.


DOI:10.1016/j.compmedimag.2023.102297
PMID:37729826
Abstract

Many successful methods developed for medical image analysis based on machine learning use supervised learning approaches, which often require large datasets annotated by experts to achieve high accuracy. However, medical data annotation is time-consuming and expensive, especially for segmentation tasks. To overcome the problem of learning with limited labeled medical image data, an alternative deep learning training strategy based on self-supervised pretraining on unlabeled imaging data is proposed in this work. For the pretraining, different distortions are arbitrarily applied to random areas of unlabeled images. Next, a Mask-RCNN architecture is trained to localize the distortion location and recover the original image pixels. This pretrained model is assumed to gain knowledge of the relevant texture in the images from the self-supervised pretraining on unlabeled imaging data. This provides a good basis for fine-tuning the model to segment the structure of interest using a limited amount of labeled training data. The effectiveness of the proposed method in different pretraining and fine-tuning scenarios was evaluated based on the Osteoarthritis Initiative dataset with the aim of segmenting effusions in MRI datasets of the knee. Applying the proposed self-supervised pretraining method improved the Dice score by up to 18% compared to training the models using only the limited annotated data. The proposed self-supervised learning approach can be applied to many other medical image analysis tasks including anomaly detection, segmentation, and classification.

摘要

许多基于机器学习开发的用于医学图像分析的成功方法都采用监督学习方法,而这通常需要由专家标注的大型数据集才能实现高精度。然而,医学数据标注既耗时又昂贵,尤其是对于分割任务而言。为了克服在有限的带标签医学图像数据上进行学习的问题,本文提出了一种基于对无标签成像数据进行自监督预训练的深度学习训练策略。对于预训练,将不同的失真随机应用于无标签图像的随机区域。接下来,训练一个Mask-RCNN架构来定位失真位置并恢复原始图像像素。假定这个预训练模型通过对无标签成像数据的自监督预训练获得图像中相关纹理的知识。这为使用有限数量的带标签训练数据对模型进行微调以分割感兴趣的结构提供了良好的基础。基于骨关节炎倡议数据集,以分割膝关节MRI数据集中的积液为目标,评估了所提方法在不同预训练和微调场景下的有效性。与仅使用有限的标注数据训练模型相比,应用所提的自监督预训练方法可将Dice分数提高多达18%。所提的自监督学习方法可应用于许多其他医学图像分析任务,包括异常检测、分割和分类。

相似文献

[1]
Self-supervised-RCNN for medical image segmentation with limited data annotation.

Comput Med Imaging Graph. 2023-10

[2]
Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.

Med Image Anal. 2023-7

[3]
Efficient Combination of CNN and Transformer for Dual-Teacher Uncertainty-guided Semi-supervised Medical Image Segmentation.

Comput Methods Programs Biomed. 2022-11

[4]
URCA: Uncertainty-based region clipping algorithm for semi-supervised medical image segmentation.

Comput Methods Programs Biomed. 2024-9

[5]
SurgNet: Self-Supervised Pretraining With Semantic Consistency for Vessel and Instrument Segmentation in Surgical Images.

IEEE Trans Med Imaging. 2024-4

[6]
Volumetric white matter tract segmentation with nested self-supervised learning using sequential pretext tasks.

Med Image Anal. 2021-8

[7]
Reducing annotation burden in MR: A novel MR-contrast guided contrastive learning approach for image segmentation.

Med Phys. 2024-4

[8]
Positional contrastive learning for improved thigh muscle segmentation in MR images.

NMR Biomed. 2024-10

[9]
Light mixed-supervised segmentation for 3D medical image data.

Med Phys. 2024-1

[10]
Self-Supervised Learning for Few-Shot Medical Image Segmentation.

IEEE Trans Med Imaging. 2022-7

引用本文的文献

[1]
Noise-induced self-supervised hybrid UNet transformer for ischemic stroke segmentation with limited data annotations.

Sci Rep. 2025-6-5

[2]
Deep learning analysis for rheumatologic imaging: current trends, future directions, and the role of human.

J Rheum Dis. 2025-4-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索