Suppr超能文献

基于偏最小二乘回归的红细胞沉降率(ESR)神经网络集成模型预测。

Neural network ensemble model for prediction of erythrocyte sedimentation rate (ESR) using partial least squares regression.

机构信息

School of Mechanical Engineering, Pusan National University, Busan, South Korea.

Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, South Korea.

出版信息

Sci Rep. 2022 Nov 15;12(1):19618. doi: 10.1038/s41598-022-23174-0.

Abstract

The erythrocyte sedimentation rate (ESR) is a non-specific blood test for determining inflammatory conditions. However, the long measurement time (60 min) to obtain ESR is an obstacle for a prompt evaluation. In this study, to reduce the measurement time of ESR, deep neural networks (DNNs) were applied to the sedimentation tendency of blood samples. DNNs using multilayer perceptron (MLP), long short-term memory (LSTM), and gated recurrent unit (GRU) were assessed and compared to determine a suitable length of time for the input sequence. To avoid overfitting, a stacking ensemble learning was adopted, which combines multiple models by using a meta model. Four meta models were compared: mean, median, least absolute shrinkage and selection operator, and partial least squares regression (PLSR) schemes. From the empirical results, LSTM and GRU models have better prediction than MLP over sequence lengths of 5 to 20 min. The decrease in [Formula: see text] and [Formula: see text] of GRU and LSTM was attenuated after a sequence length of 15 min, so the input sequence length is determined as 15 min. In terms of the meta model, the statistical comparison suggests that GRU combined with PLSR (GRU-PLSR) is the best case. Then, the GRU-PLSR was tested for prediction of ESR data obtained from periodontitis patients to check its applicability to a specific disease. The Bland-Altman plot shows acceptable agreement between measured and predicted ESR values. Based on the results, the GRU-PLSR can predict ESR with improved performance within 15 min and has potential applicability to ESR data with inflammatory and non-inflammatory conditions.

摘要

红细胞沉降率(ESR)是一种用于确定炎症状态的非特异性血液检测。然而,获得 ESR 的长时间测量(60 分钟)是快速评估的障碍。在这项研究中,为了缩短 ESR 的测量时间,将深度学习神经网络(DNN)应用于血液样本的沉降趋势。评估并比较了使用多层感知机(MLP)、长短期记忆(LSTM)和门控循环单元(GRU)的 DNN,以确定输入序列的合适长度。为了避免过拟合,采用堆叠集成学习,通过使用元模型来结合多个模型。比较了四种元模型:均值、中位数、最小绝对收缩和选择算子(LASSO)以及偏最小二乘回归(PLSR)方案。从经验结果来看,在 5 到 20 分钟的序列长度上,LSTM 和 GRU 模型的预测效果优于 MLP。在序列长度为 15 分钟后,GRU 和 LSTM 的[Formula: see text]和[Formula: see text]的下降得到缓解,因此将输入序列长度确定为 15 分钟。就元模型而言,统计比较表明,GRU 与 PLSR 结合(GRU-PLSR)是最佳情况。然后,测试了 GRU-PLSR 对牙周病患者的 ESR 数据的预测,以检查其在特定疾病中的适用性。Bland-Altman 图显示了测量值和预测值之间可接受的一致性。基于这些结果,GRU-PLSR 可以在 15 分钟内提高性能预测 ESR,并且具有对炎症和非炎症条件的 ESR 数据的潜在适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/204e/9666533/c53deb4fb0cc/41598_2022_23174_Fig1_HTML.jpg

相似文献

2
Application of TCN-biGRU neural network in [Formula: see text] concentration prediction.
Environ Sci Pollut Res Int. 2023 Dec;30(56):119506-119517. doi: 10.1007/s11356-023-30354-6. Epub 2023 Nov 6.
3
Hybrid Deep Recurrent Neural Networks for Noise Reduction of MEMS-IMU with Static and Dynamic Conditions.
Micromachines (Basel). 2021 Feb 20;12(2):214. doi: 10.3390/mi12020214.
4
Application of Dual-Channel Convolutional Neural Network Algorithm in Semantic Feature Analysis of English Text Big Data.
Comput Intell Neurosci. 2021 Nov 6;2021:7085412. doi: 10.1155/2021/7085412. eCollection 2021.
7
Predicting Energy Consumption Using LSTM, Multi-Layer GRU and Drop-GRU Neural Networks.
Sensors (Basel). 2022 May 27;22(11):4062. doi: 10.3390/s22114062.
8
Character gated recurrent neural networks for Arabic sentiment analysis.
Sci Rep. 2022 Jun 13;12(1):9779. doi: 10.1038/s41598-022-13153-w.
10
Traffic flow prediction using bi-directional gated recurrent unit method.
Urban Inform. 2022;1(1):16. doi: 10.1007/s44212-022-00015-z. Epub 2022 Dec 1.

本文引用的文献

1
2
Dynamic selective auditory attention detection using RNN and reinforcement learning.
Sci Rep. 2021 Jul 29;11(1):15497. doi: 10.1038/s41598-021-94876-0.
3
Suspended sediment load prediction using long short-term memory neural network.
Sci Rep. 2021 Apr 9;11(1):7826. doi: 10.1038/s41598-021-87415-4.
4
Recurrent neural network ensemble, a new instrument for the prediction of infectious diseases.
Eur Phys J Plus. 2021;136(3):319. doi: 10.1140/epjp/s13360-021-01285-3. Epub 2021 Mar 16.
5
Automated measurement of the erythrocyte sedimentation rate: method validation and comparison.
Clin Chem Lab Med. 2019 Aug 27;57(9):1364-1373. doi: 10.1515/cclm-2019-0204.
6
Recurrent Neural Networks for Multivariate Time Series with Missing Values.
Sci Rep. 2018 Apr 17;8(1):6085. doi: 10.1038/s41598-018-24271-9.
7
Investigation on prediction formulae for calculating erythrocyte sedimentation rate.
J Gen Fam Med. 2017 May 2;18(3):146-147. doi: 10.1002/jgf2.1. eCollection 2017 Jun.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验