Suppr超能文献

长短期记忆神经网络和门控循环单元神经网络作为预测控制中动态过程的模型:为两个化学反应器开发的模型的比较。

LSTM and GRU Neural Networks as Models of Dynamical Processes Used in Predictive Control: A Comparison of Models Developed for Two Chemical Reactors.

机构信息

Faculty of Electronics and Information Technology, Institute of Control and Computation Engineering, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland.

出版信息

Sensors (Basel). 2021 Aug 20;21(16):5625. doi: 10.3390/s21165625.

Abstract

This work thoroughly compares the efficiency of Long Short-Term Memory Networks (LSTMs) and Gated Recurrent Unit (GRU) neural networks as models of the dynamical processes used in Model Predictive Control (MPC). Two simulated industrial processes were considered: a polymerisation reactor and a neutralisation (pH) process. First, MPC prediction equations for both types of models were derived. Next, the efficiency of the LSTM and GRU models was compared for a number of model configurations. The influence of the order of dynamics and the number of neurons on the model accuracy was analysed. Finally, the efficiency of the considered models when used in MPC was assessed. The influence of the model structure on different control quality indicators and the calculation time was discussed. It was found that the GRU network, although it had a lower number of parameters than the LSTM one, may be successfully used in MPC without any significant deterioration of control quality.

摘要

这项工作彻底比较了长短期记忆网络(LSTM)和门控循环单元(GRU)神经网络作为模型预测控制(MPC)中使用的动态过程的效率。考虑了两个模拟工业过程:聚合反应器和中和(pH)过程。首先,为这两种类型的模型推导出了 MPC 预测方程。接下来,比较了 LSTM 和 GRU 模型在多种模型配置下的效率。分析了动力学阶数和神经元数量对模型精度的影响。最后,评估了在 MPC 中使用所考虑模型的效率。讨论了模型结构对不同控制质量指标和计算时间的影响。结果发现,虽然 GRU 网络的参数数量比 LSTM 网络少,但在不显著降低控制质量的情况下,它可以成功地用于 MPC。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02da/8402357/5421f8e4c92d/sensors-21-05625-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验