Suppr超能文献

开发用于读取胸部X光片的人工智能模型:一项前瞻性验证研究方案

Developing an Artificial Intelligence Model for Reading Chest X-rays: Protocol for a Prospective Validation Study.

作者信息

Miró Catalina Queralt, Fuster-Casanovas Aïna, Solé-Casals Jordi, Vidal-Alaball Josep

机构信息

Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Sant Fruitós de Bages, Spain.

Health Promotion in Rural Areas Research Group, Gerencia Territorial de la Catalunya Central, Institut Català de la Salut, Sant Fruitós de Bages, Spain.

出版信息

JMIR Res Protoc. 2022 Nov 16;11(11):e39536. doi: 10.2196/39536.

Abstract

BACKGROUND

Chest x-rays are the most commonly used type of x-rays today, accounting for up to 26% of all radiographic tests performed. However, chest radiography is a complex imaging modality to interpret. Several studies have reported discrepancies in chest x-ray interpretations among emergency physicians and radiologists. It is of vital importance to be able to offer a fast and reliable diagnosis for this kind of x-ray, using artificial intelligence (AI) to support the clinician. Oxipit has developed an AI algorithm for reading chest x-rays, available through a web platform called ChestEye. This platform is an automatic computer-aided diagnosis system where a reading of the inserted chest x-ray is performed, and an automatic report is returned with a capacity to detect 75 pathologies, covering 90% of diagnoses.

OBJECTIVE

The overall objective of the study is to perform validation with prospective data of the ChestEye algorithm as a diagnostic aid. We wish to validate the algorithm for a single pathology and multiple pathologies by evaluating the accuracy, sensitivity, and specificity of the algorithm.

METHODS

A prospective validation study will be carried out to compare the diagnosis of the reference radiologists for the users attending the primary care center in the Osona region (Spain), with the diagnosis of the ChestEye AI algorithm. Anonymized chest x-ray images will be acquired and fed into the AI algorithm interface, which will return an automatic report. A radiologist will evaluate the same chest x-ray, and both assessments will be compared to calculate the precision, sensitivity, specificity, and accuracy of the AI algorithm. Results will be represented globally and individually for each pathology using a confusion matrix and the One-vs-All methodology.

RESULTS

Patient recruitment was conducted from February 7, 2022, and it is expected that data can be obtained in 5 to 6 months. In June 2022, more than 450 x-rays have been collected, so it is expected that 600 samples will be gathered in July 2022. We hope to obtain sufficient evidence to demonstrate that the use of AI in the reading of chest x-rays can be a good tool for diagnostic support. However, there is a decreasing number of radiology professionals and, therefore, it is necessary to develop and validate tools to support professionals who have to interpret these tests.

CONCLUSIONS

If the results of the validation of the model are satisfactory, it could be implemented as a support tool and allow an increase in the accuracy and speed of diagnosis, patient safety, and agility in the primary care system, while reducing the cost of unnecessary tests.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/39536.

摘要

背景

胸部X光片是当今最常用的X光检查类型,占所有放射检查的比例高达26%。然而,胸部X光摄影是一种复杂的成像方式,难以解读。多项研究报告称,急诊医生和放射科医生对胸部X光片的解读存在差异。利用人工智能(AI)辅助临床医生,快速且可靠地诊断此类X光片至关重要。Oxipit开发了一种用于读取胸部X光片的AI算法,可通过名为ChestEye的网络平台使用。该平台是一个自动计算机辅助诊断系统,能对插入的胸部X光片进行读取,并返回一份自动报告,可检测75种病症,涵盖90%的诊断情况。

目的

本研究的总体目标是以前瞻性数据验证ChestEye算法作为诊断辅助工具的有效性。我们希望通过评估该算法的准确性、敏感性和特异性,来验证其对单一病症和多种病症的诊断能力。

方法

将开展一项前瞻性验证研究,比较西班牙奥索纳地区基层医疗中心的参考放射科医生对患者的诊断结果与ChestEye AI算法的诊断结果。获取匿名的胸部X光图像并输入AI算法界面,该界面将返回一份自动报告。一名放射科医生将对同一张胸部X光片进行评估,然后比较两者的评估结果,以计算AI算法的精确度、敏感性、特异性和准确性。结果将使用混淆矩阵和一对多方法,以全局和针对每种病症单独呈现。

结果

患者招募工作于2022年2月7日开始,预计5至6个月后可获取数据。2022年6月,已收集了450多张X光片,预计2022年7月将收集600个样本。我们希望获得充分证据,证明在胸部X光片读取中使用AI可成为一种良好的诊断辅助工具。然而,放射科专业人员数量在减少,因此有必要开发和验证工具,以辅助那些必须解读这些检查结果的专业人员。

结论

如果模型验证结果令人满意,它可作为一种辅助工具实施,提高诊断的准确性和速度、患者安全性以及基层医疗系统的敏捷性,同时降低不必要检查的成本。

国际注册报告识别号(IRRID):PRR1-10.2196/39536

相似文献

2
Comparison of Chest Radiograph Interpretations by Artificial Intelligence Algorithm vs Radiology Residents.
JAMA Netw Open. 2020 Oct 1;3(10):e2022779. doi: 10.1001/jamanetworkopen.2020.22779.
4
The effect of an artificial intelligence algorithm on chest X-ray interpretation of radiology residents.
Br J Radiol. 2022 Oct 1;95(1139):20210688. doi: 10.1259/bjr.20210688. Epub 2022 Oct 5.
9
Development of a novel artificial intelligence algorithm to detect pulmonary nodules on chest radiography.
Fukushima J Med Sci. 2023 Nov 15;69(3):177-183. doi: 10.5387/fms.2023-14. Epub 2023 Oct 17.
10
An Artificial Intelligence-Based Chest X-ray Model on Human Nodule Detection Accuracy From a Multicenter Study.
JAMA Netw Open. 2021 Dec 1;4(12):e2141096. doi: 10.1001/jamanetworkopen.2021.41096.

引用本文的文献

1
Artificial Intelligence in Thoracic Surgery: Transforming Diagnostics, Treatment, and Patient Outcomes.
Diagnostics (Basel). 2025 Jul 8;15(14):1734. doi: 10.3390/diagnostics15141734.
4
Knowledge and perception of primary care healthcare professionals on the use of artificial intelligence as a healthcare tool.
Digit Health. 2023 Jun 14;9:20552076231180511. doi: 10.1177/20552076231180511. eCollection 2023 Jan-Dec.
5
AI-Based CXR First Reading: Current Limitations to Ensure Practical Value.
Diagnostics (Basel). 2023 Apr 16;13(8):1430. doi: 10.3390/diagnostics13081430.

本文引用的文献

1
Artificial Intelligence, Important Assistant of Scientists and Physicians.
Galen Med J. 2020 Nov 11;9:e2048. doi: 10.31661/gmj.v9i0.2048. eCollection 2020.
2
Role of Artificial Intelligence Applications in Real-Life Clinical Practice: Systematic Review.
J Med Internet Res. 2021 Apr 22;23(4):e25759. doi: 10.2196/25759.
5
Comparison of Chest Radiograph Interpretations by Artificial Intelligence Algorithm vs Radiology Residents.
JAMA Netw Open. 2020 Oct 1;3(10):e2022779. doi: 10.1001/jamanetworkopen.2020.22779.
6
[Artificial intelligence and its applications in medicine II: Current importance and practical applications].
Aten Primaria. 2021 Jan;53(1):81-88. doi: 10.1016/j.aprim.2020.04.014. Epub 2020 Jun 19.
9
Deep learning-based detection system for multiclass lesions on chest radiographs: comparison with observer readings.
Eur Radiol. 2020 Mar;30(3):1359-1368. doi: 10.1007/s00330-019-06532-x. Epub 2019 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验