Suppr超能文献

开发一种新型人工智能算法,用于检测胸部 X 光片上的肺结节。

Development of a novel artificial intelligence algorithm to detect pulmonary nodules on chest radiography.

机构信息

Department of Thoracic Surgery, Aizu Medical Center, Fukushima Medical University.

University of Tsukuba School of Integrative and Global Majors.

出版信息

Fukushima J Med Sci. 2023 Nov 15;69(3):177-183. doi: 10.5387/fms.2023-14. Epub 2023 Oct 17.

Abstract

BACKGROUND

In this study, we aimed to develop a novel artificial intelligence (AI) algorithm to support pulmonary nodule detection, which will enable physicians to efficiently interpret chest radiographs for lung cancer diagnosis.

METHODS

We analyzed chest X-ray images obtained from a health examination center in Fukushima and the National Institutes of Health (NIH) Chest X-ray 14 dataset. We categorized these data into two types: type A included both Fukushima and NIH datasets, and type B included only the Fukushima dataset. We also demonstrated pulmonary nodules in the form of a heatmap display on each chest radiograph and calculated the positive probability score as an index value.

RESULTS

Our novel AI algorithms had a receiver operating characteristic (ROC) area under the curve (AUC) of 0.74, a sensitivity of 0.75, and a specificity of 0.60 for the type A dataset. For the type B dataset, the respective values were 0.79, 0.72, and 0.74. The algorithms in both the type A and B datasets were superior to the accuracy of radiologists and similar to previous studies.

CONCLUSIONS

The proprietary AI algorithms had a similar accuracy for interpreting chest radiographs when compared with previous studies and radiologists. Especially, we could train a high quality AI algorithm, even with our small type B data set. However, further studies are needed to improve and further validate the accuracy of our AI algorithm.

摘要

背景

在这项研究中,我们旨在开发一种新的人工智能(AI)算法来支持肺结节检测,这将使医生能够有效地解释胸部 X 光片以进行肺癌诊断。

方法

我们分析了来自福岛健康检查中心和美国国立卫生研究院(NIH)胸部 X 光 14 数据集的胸部 X 光图像。我们将这些数据分为两类:A 类包括福岛和 NIH 数据集,B 类仅包括福岛数据集。我们还以每个胸部 X 光片上的热图显示形式展示了肺结节,并计算了阳性概率评分作为指标值。

结果

我们的新型 AI 算法在 A 数据集的受试者工作特征(ROC)曲线下面积(AUC)为 0.74,灵敏度为 0.75,特异性为 0.60。对于 B 数据集,相应的值分别为 0.79、0.72 和 0.74。A 型和 B 型数据集的算法均优于放射科医生的准确性,与先前的研究相似。

结论

与之前的研究和放射科医生相比,专有的 AI 算法在解释胸部 X 光片方面具有相似的准确性。特别是,即使使用我们较小的 B 数据集,我们也可以训练出高质量的 AI 算法。但是,需要进一步研究以提高和进一步验证我们的 AI 算法的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a218/10694515/30309d8025c3/2185-4610-69-177-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验