Suppr超能文献

刺激驱动的情感变化:结合输入评估情感动态的计算模型

Stimulus-Driven Affective Change: Evaluating Computational Models of Affect Dynamics in Conjunction with Input.

作者信息

Vanhasbroeck Niels, Loossens Tim, Anarat Nil, Ariens Sigert, Vanpaemel Wolf, Moors Agnes, Tuerlinckx Francis

机构信息

Research Group of Quantitative Psychology and Individual Differences, KU Leuven, Leuven, Belgium.

Developmental Psychiatry, KU Leuven, Leuven, Belgium.

出版信息

Affect Sci. 2022 Jul 14;3(3):559-576. doi: 10.1007/s42761-022-00118-5. eCollection 2022 Sep.

Abstract

UNLABELLED

The way in which emotional experiences change over time can be studied through the use of computational models. An important question with regard to such models is which characteristics of the data a model should account for in order to adequately describe these data. Recently, attention has been drawn on the potential importance of nonlinearity as a characteristic of affect dynamics. However, this conclusion was reached through the use of experience sampling data in which no information was available about the context in which affect was measured. However, affective stimuli may induce some or all of the observed nonlinearity. This raises the question of whether computational models of affect dynamics should account for nonlinearity, or whether they just need to account for the affective stimuli a person encounters. To investigate this question, we used a probabilistic reward task in which participants either won or lost money at each trial. A number of plausible ways in which the experimental stimuli played a role were considered and applied to the nonlinear Affective Ising Model (AIM) and the linear Bounded Ornstein-Uhlenbeck (BOU) model. In order to reach a conclusion, the relative and absolute performance of these models were assessed. Results suggest that some of the observed nonlinearity could indeed be attributed to the experimental stimuli. However, not all nonlinearity was accounted for by these stimuli, suggesting that nonlinearity may present an inherent feature of affect dynamics. As such, nonlinearity should ideally be accounted for in the computational models of affect dynamics.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s42761-022-00118-5.

摘要

未标注

情感体验随时间变化的方式可以通过计算模型来研究。关于此类模型的一个重要问题是,模型应该考虑数据的哪些特征才能充分描述这些数据。最近,非线性作为情感动态的一个特征的潜在重要性受到了关注。然而,这一结论是通过使用经验抽样数据得出的,在这些数据中,没有关于情感测量背景的信息。然而,情感刺激可能会诱发部分或全部观察到的非线性。这就提出了一个问题,即情感动态的计算模型是应该考虑非线性,还是只需要考虑一个人遇到的情感刺激。为了研究这个问题,我们使用了一个概率奖励任务,参与者在每次试验中要么赢钱要么输钱。我们考虑了实验刺激发挥作用的一些合理方式,并将其应用于非线性情感伊辛模型(AIM)和线性有界奥恩斯坦 - 乌伦贝克(BOU)模型。为了得出结论,我们评估了这些模型的相对和绝对性能。结果表明,一些观察到的非线性确实可以归因于实验刺激。然而,这些刺激并没有解释所有的非线性,这表明非线性可能是情感动态的一个固有特征。因此,在情感动态的计算模型中,理想情况下应该考虑非线性。

补充信息

在线版本包含可在10.1007/s42761-022-00118-5获取的补充材料。

相似文献

1
Stimulus-Driven Affective Change: Evaluating Computational Models of Affect Dynamics in Conjunction with Input.
Affect Sci. 2022 Jul 14;3(3):559-576. doi: 10.1007/s42761-022-00118-5. eCollection 2022 Sep.
2
Nonlinearity in affect dynamics persists after accounting for the valence of daily-life events.
Emotion. 2024 Aug;24(5):1206-1223. doi: 10.1037/emo0001336. Epub 2024 Feb 5.
3
The Affective Dynamics of Everyday Digital Life: Opening Computational Possibility.
Affect Sci. 2023 Aug 7;4(3):529-540. doi: 10.1007/s42761-023-00202-4. eCollection 2023 Sep.
4
The goal-relevance of affective stimuli is dynamically represented in affective experience.
R Soc Open Sci. 2021 Nov 24;8(11):211548. doi: 10.1098/rsos.211548. eCollection 2021 Nov.
5
[Emotional processes in schizophrenia: investigation of the evaluative component].
Encephale. 2005 Nov-Dec;31(6 Pt 1):672-82. doi: 10.1016/s0013-7006(05)82425-x.
6
Light adaptation increases response latency of alpha ganglion cells via a threshold-like nonlinearity.
Neuroscience. 2014 Jan 3;256:101-16. doi: 10.1016/j.neuroscience.2013.10.006. Epub 2013 Oct 18.
8
Modeling nonlinearity in dilution design microarray data.
Bioinformatics. 2007 Jun 1;23(11):1339-47. doi: 10.1093/bioinformatics/btm002. Epub 2007 Jan 19.
9
The Affective Ising Model: A computational account of human affect dynamics.
PLoS Comput Biol. 2020 May 15;16(5):e1007860. doi: 10.1371/journal.pcbi.1007860. eCollection 2020 May.
10
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.

引用本文的文献

1
Characterizing the dynamics, reactivity and controllability of moods in depression with a Kalman filter.
PLoS Comput Biol. 2024 Sep 23;20(9):e1012457. doi: 10.1371/journal.pcbi.1012457. eCollection 2024 Sep.
2
Mental flexibility assessment: A research protocol for patients with Parkinson's Disease and Anorexia Nervosa.
PLoS One. 2023 Dec 20;18(12):e0293921. doi: 10.1371/journal.pone.0293921. eCollection 2023.
3
Chasing consistency: On the measurement error in self-reported affect in experiments.
Behav Res Methods. 2024 Apr;56(4):3009-3022. doi: 10.3758/s13428-023-02290-3. Epub 2023 Nov 22.

本文引用的文献

1
Efficient estimation of bounded gradient-drift diffusion models for affect on CPU and GPU.
Behav Res Methods. 2022 Jun;54(3):1428-1443. doi: 10.3758/s13428-021-01674-7. Epub 2021 Sep 24.
2
A model of mood as integrated advantage.
Psychol Rev. 2022 Apr;129(3):513-541. doi: 10.1037/rev0000294. Epub 2021 Sep 13.
3
The Statistical Specificity of Emotion Dynamics in Borderline Personality Disorder.
J Pers Disord. 2021 Dec;35(6):819-840. doi: 10.1521/pedi_2021_35_509. Epub 2021 Jun 14.
4
Affective context and its uncertainty drive momentary affective experience.
Emotion. 2022 Sep;22(6):1336-1346. doi: 10.1037/emo0000912. Epub 2020 Nov 30.
5
Time series analysis of intensive longitudinal data in psychosomatic research: A methodological overview.
J Psychosom Res. 2020 Jul 21;137:110191. doi: 10.1016/j.jpsychores.2020.110191.
6
The Affective Ising Model: A computational account of human affect dynamics.
PLoS Comput Biol. 2020 May 15;16(5):e1007860. doi: 10.1371/journal.pcbi.1007860. eCollection 2020 May.
7
Context matters for affective chronometry.
Nat Hum Behav. 2020 Jul;4(7):688-689. doi: 10.1038/s41562-020-0860-7. Epub 2020 Apr 27.
8
Neuroticism may not reflect emotional variability.
Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9270-9276. doi: 10.1073/pnas.1919934117. Epub 2020 Apr 15.
9
Temporal dynamics of real-world emotion are more strongly linked to prediction error than outcome.
J Exp Psychol Gen. 2020 Sep;149(9):1755-1766. doi: 10.1037/xge0000740. Epub 2020 Feb 10.
10
Affective calculus: The construction of affect through information integration over time.
Emotion. 2021 Feb;21(1):159-174. doi: 10.1037/emo0000681. Epub 2019 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验