Shiwaku Kousuke, Kamiya Tomoaki, Suzuki Daisuke, Yamakawa Satoshi, Otsubo Hidenori, Suzuki Tomoyuki, Takahashi Katsunori, Okada Yohei, Teramoto Atsushi, Ohnishi Hirofumi, Fujie Hiromichi, Yamashita Toshihiko
Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan.
Department of Health Science, Hokkaido Chitose College of Rehabilitation, Chitose, Japan.
Orthop J Sports Med. 2022 Nov 11;10(11):23259671221132845. doi: 10.1177/23259671221132845. eCollection 2022 Nov.
Few studies have compared the force distribution between the anterolateral, posterolateral, and medial structures of the knee.
To investigate the important structures in an intact knee contributing to force distribution in response to anterior tibial load.
Controlled laboratory study.
Nine fresh-frozen cadaveric knee specimens underwent robotic testing. First, 100 N of anterior tibial load was applied to the intact knee at 0°, 15°, 30°, 60°, and 90° of knee flexion. The anterior cruciate ligament (ACL), anterolateral capsule, lateral collateral ligament, popliteal tendon, posterior root of the lateral meniscus, superficial medial collateral ligament, posterior root of the medial meniscus (MM), and posterior cruciate ligament were then completely transected in sequential order. After each transection, the authors reproduced the intact knee motion when a 100-N anterior tibial load was applied. By applying the principle of superposition, the resultant force of each structure was determined based on the 6 degrees of freedom force/torque data of each state.
At every measured knee flexion angle, the resultant force of the ACL was the largest of the tested structures. At knee flexion angles of 60° and 90°, the resultant force of the MM was larger than that of all other structures with the exception of the ACL.
The MM was identified as playing an important role in response to anterior tibial load at 60° and 90° of flexion.
In clinical settings, the ACL of patients with a poorly functioning MM, such as tear of the MM posterior root, should be monitored considering the large resultant force in response to an anterior tibial load.
很少有研究比较膝关节前外侧、后外侧和内侧结构之间的力分布情况。
研究完整膝关节中在应对胫骨前负荷时对力分布起重要作用的结构。
对照实验室研究。
对9个新鲜冷冻的尸体膝关节标本进行机器人测试。首先,在膝关节屈曲0°、15°、30°、60°和90°时,对完整膝关节施加100 N的胫骨前负荷。然后按顺序依次完全切断前交叉韧带(ACL)、前外侧关节囊、外侧副韧带、腘肌腱、外侧半月板后根、浅层内侧副韧带、内侧半月板(MM)后根和后交叉韧带。每次切断后,作者在施加100 N胫骨前负荷时重现完整膝关节的运动。通过应用叠加原理,根据每种状态的6个自由度力/扭矩数据确定每个结构的合力。
在每个测量的膝关节屈曲角度,ACL的合力是测试结构中最大的。在膝关节屈曲60°和90°时,除ACL外,MM的合力大于所有其他结构。
MM被确定在膝关节屈曲60°和90°时应对胫骨前负荷中起重要作用。
在临床环境中,对于MM功能不佳的患者,如MM后根撕裂,考虑到对胫骨前负荷的合力较大,应监测其ACL。