Department of Orthopedics and Traumatology, Paracelsus Medical University Salzburg, Salzburg, Austria.
Research Unit for Orthopaedic Sports Medicine and Injury Prevention (OSMI), ISAG, UMIT Hall, Hall in Tirol, Austria.
Knee Surg Sports Traumatol Arthrosc. 2021 Feb;29(2):405-416. doi: 10.1007/s00167-020-05947-0. Epub 2020 Apr 10.
The purpose of the present study was to determine how the medial structures and ACL contribute to restraining anteromedial instability of the knee.
Twenty-eight paired, fresh-frozen human cadaveric knees were tested in a six-degree of freedom robotic setup. After sequentially cutting the dMCL, sMCL, POL and ACL in four different cutting orders, the following simulated clinical laxity tests were applied at 0°, 30°, 60° and 90° of knee flexion: 4 Nm external tibial rotation (ER), 4 Nm internal tibial rotation (IR), 8 Nm valgus rotation (VR) and anteromedial rotation (AMR)-combined 89 N anterior tibial translation and 4 Nm ER. Knee kinematics were recorded in the intact state and after each cut using an optical tracking system. Differences in medial compartment translation (AMT) and tibial rotation (AMR, ER, IR, VR) from the intact state were then analyzed.
The sMCL was the most important restraint to AMR, ER and VR at all flexion angles. Release of the proximal tibial attachment of the sMCL caused no significant increase in laxity if the distal sMCL attachment remained intact. The dMCL was a minor restraint to AMT and ER. The POL controlled IR and was a minor restraint to AMT and ER near extension. The ACL contributed with the sMCL in restraining AMT and was a secondary restraint to ER and VR in the MCL deficient knee.
The sMCL appears to be the most important restraint to anteromedial instability; the dMCL and POL play more minor roles. Based on the present data a new classification of anteromedial instability is proposed, which may support clinical examination and treatment decision. In higher grades of anteromedial instability an injury to the sMCL should be suspected and addressed if treated surgically.
本研究旨在确定内侧结构和 ACL 如何限制膝关节前内侧不稳定。
在六自由度机器人设置中测试了 28 对新鲜冷冻的人尸体膝关节。在按照四种不同的切割顺序依次切割 dMCL、sMCL、POL 和 ACL 后,在 0°、30°、60°和 90°膝关节屈曲时应用以下模拟临床松弛测试:4Nm 外旋(ER)、4Nm 内旋(IR)、8Nm 外翻旋转(VR)和前内侧旋转(AMR)-联合 89N 前胫骨平移和 4Nm ER。在完整状态和每次切割后使用光学跟踪系统记录膝关节运动学。然后分析从完整状态开始的内侧间隔平移(AMT)和胫骨旋转(AMR、ER、IR、VR)的差异。
sMCL 是所有屈曲角度下限制 AMR、ER 和 VR 的最重要结构。如果 sMCL 远端附着点保持完整,近端胫骨附着点的释放不会导致松弛明显增加。dMCL 对 AMT 和 ER 的限制较小。POL 控制 IR,在伸展附近对 AMT 和 ER 的限制较小。ACL 与 sMCL 一起限制 AMT,并在 MCL 缺陷膝关节中限制 ER 和 VR 作为次要限制。
sMCL 似乎是限制前内侧不稳定的最重要结构;dMCL 和 POL 发挥较小的作用。基于目前的数据,提出了一种新的前内侧不稳定分类,这可能支持临床检查和治疗决策。在较高等级的前内侧不稳定中,如果进行手术治疗,应怀疑并处理 sMCL 损伤。