Suppr超能文献

心肌梗死后左心室的收缩适应性:基于啮齿动物特异性计算模型的预测。

Contractile Adaptation of the Left Ventricle Post-myocardial Infarction: Predictions by Rodent-Specific Computational Modeling.

机构信息

Computational Cardiovascular Bioengineering Laboratory, Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.

Department of Molecular Cardiology, Texas Heart Institute, Houston, TX, USA.

出版信息

Ann Biomed Eng. 2023 Apr;51(4):846-863. doi: 10.1007/s10439-022-03102-z. Epub 2022 Nov 17.

Abstract

Myocardial infarction (MI) results in cardiac myocyte death and the formation of a fibrotic scar in the left ventricular free wall (LVFW). Following an acute MI, LVFW remodeling takes place consisting of several alterations in the structure and properties of cellular and extracellular components with a heterogeneous pattern across the LVFW. The normal function of the heart is strongly influenced by the passive and active biomechanical behavior of the LVFW, and progressive myocardial structural remodeling can have a detrimental effect on both diastolic and systolic functions of the LV leading to heart failure. Despite important advances in understanding LVFW passive remodeling in the setting of MI, heterogeneous remodeling in the LVFW active properties and its relationship to organ-level LV function remain understudied. To address these gaps, we developed high-fidelity finite-element (FE) rodent computational cardiac models (RCCMs) of MI using extensive datasets from MI rat hearts representing the heart remodeling from one-week (1-wk) to four-week (4-wk) post-MI timepoints. The rat-specific models (n = 2 for each timepoint) integrate detailed imaging data of the heart geometry, myocardial fiber architecture, and infarct zone determined using late gadolinium enhancement prior to terminal measurements. The computational models predicted a significantly higher level of active tension in remote myocardium in early post-MI hearts (1-wk post-MI) followed by a return to near the control level in late-stage MI (3- and 4-wk post-MI). The late-stage MI rats showed smaller myofiber ranges in the remote region and in-silico experiments using RCCMs suggested that the smaller fiber helicity is consistent with lower contractile forces needed to meet the measured ejection fractions in late-stage MI. In contrast, in-silico experiments predicted that collagen fiber transmural orientation in the infarct region has little influence on organ-level function. In addition, our MI RCCMs indicated that reduced and potentially positive circumferential strains in the infarct region at end-systole can be used to infer information about the time-varying properties of the infarct region. The detailed description of regional passive and active remodeling patterns can complement and enhance the traditional measures of LV anatomy and function that often lead to a gross and limited assessment of cardiac performance. The translation and implementation of our model in patient-specific organ-level simulations offer to advance the investigation of individualized prognosis and intervention for MI.

摘要

心肌梗死(MI)导致心肌细胞死亡,并在心室内壁(LVFW)形成纤维疤痕。在急性 MI 后,LVFW 重塑发生,包括 LVFW 内细胞和细胞外成分的结构和性质的几个改变,具有异质模式。LVFW 的被动和主动生物力学行为对心脏的正常功能有强烈影响,渐进性心肌结构重塑会对 LV 的舒张和收缩功能产生不利影响,导致心力衰竭。尽管在 MI 背景下对 LVFW 被动重塑有了重要的了解,但 LVFW 主动性质的异质重塑及其与器官水平 LV 功能的关系仍未得到充分研究。为了解决这些差距,我们使用代表 MI 后 1 周到 4 周时间点心脏重塑的 MI 大鼠心脏的大量数据集,开发了 MI 的高保真有限元(FE)啮齿动物计算心脏模型(RCCM)。大鼠特异性模型(每个时间点 n = 2)整合了心脏几何形状、心肌纤维结构和晚期钆增强确定的梗塞区的详细成像数据,用于终端测量之前。计算模型预测在早期 MI 心脏(1 周 MI 后)中,远程心肌的主动张力水平显著升高,随后在晚期 MI(3 周和 4 周 MI 后)中接近对照水平。晚期 MI 大鼠在远程区域的肌纤维范围较小,使用 RCCM 的体内实验表明,较小的纤维螺旋度与晚期 MI 中需要满足测量射血分数的较低收缩力一致。相反,体内实验预测梗塞区胶原纤维的跨壁取向对器官水平功能的影响很小。此外,我们的 MI RCCM 表明,在收缩末期梗塞区的减少和潜在的正圆周应变可以用于推断梗塞区时变特性的信息。区域被动和主动重塑模式的详细描述可以补充和增强传统的 LV 解剖和功能测量,这些测量通常导致对心脏功能的粗略和有限评估。我们的模型在患者特异性器官水平模拟中的翻译和实施,为 MI 的个体化预后和干预的研究提供了帮助。

相似文献

1
Contractile Adaptation of the Left Ventricle Post-myocardial Infarction: Predictions by Rodent-Specific Computational Modeling.
Ann Biomed Eng. 2023 Apr;51(4):846-863. doi: 10.1007/s10439-022-03102-z. Epub 2022 Nov 17.
2
An image-driven micromechanical approach to characterize multiscale remodeling in infarcted myocardium.
Acta Biomater. 2024 Jan 1;173:109-122. doi: 10.1016/j.actbio.2023.10.027. Epub 2023 Nov 2.
3
A Micro-anatomical Model of the Infarcted Left Ventricle Border Zone to Study the Influence of Collagen Undulation.
Funct Imaging Model Heart. 2023 Jun;13958:34-43. doi: 10.1007/978-3-031-35302-4_4. Epub 2023 Jun 16.
5
Multiscale characterization of left ventricle active behavior in the mouse.
Acta Biomater. 2023 May;162:240-253. doi: 10.1016/j.actbio.2023.03.022. Epub 2023 Mar 23.
8
Regional and temporal changes in left ventricular strain and stiffness in a porcine model of myocardial infarction.
Am J Physiol Heart Circ Physiol. 2018 Oct 1;315(4):H958-H967. doi: 10.1152/ajpheart.00279.2018. Epub 2018 Jul 13.
10
Multiscale Characterization of Impact of Infarct Size on Myocardial Remodeling in an Ovine Infarct Model.
Cells Tissues Organs. 2015;200(5):349-62. doi: 10.1159/000435875. Epub 2015 Aug 14.

引用本文的文献

2
Polyphenol-mediated microbiome modulation in STEMI patients: a pilot study.
Front Med (Lausanne). 2025 May 21;12:1522373. doi: 10.3389/fmed.2025.1522373. eCollection 2025.
3
Estimation of Active Tension in Cardiac Microtissues by Solving a PDE-Constrained Optimization Problem.
Int J Numer Method Biomed Eng. 2025 Apr;41(4):e70034. doi: 10.1002/cnm.70034.
4
Right Ventricular Stiffening and Anisotropy Alterations in Pulmonary Hypertension: Mechanisms and Relations to Right Heart Failure.
J Am Heart Assoc. 2025 Mar 4;14(5):e037126. doi: 10.1161/JAHA.124.037126. Epub 2025 Feb 26.
5
Stress relaxation rates of myocardium from failing and non-failing hearts.
Biomech Model Mechanobiol. 2025 Feb;24(1):265-280. doi: 10.1007/s10237-024-01909-4. Epub 2024 Dec 31.
6
Computational modeling of left ventricular flow using PC-CMR-derived four-dimensional wall motion.
bioRxiv. 2024 Aug 28:2024.08.27.609991. doi: 10.1101/2024.08.27.609991.
7
In-silico heart model phantom to validate cardiac strain imaging.
bioRxiv. 2024 Aug 7:2024.08.05.606672. doi: 10.1101/2024.08.05.606672.
10
A multiscale finite element model of left ventricular mechanics incorporating baroreflex regulation.
Comput Biol Med. 2024 Jan;168:107690. doi: 10.1016/j.compbiomed.2023.107690. Epub 2023 Nov 11.

本文引用的文献

1
Strain-dependent stress relaxation behavior of healthy right ventricular free wall.
Acta Biomater. 2022 Oct 15;152:290-299. doi: 10.1016/j.actbio.2022.08.043. Epub 2022 Aug 24.
2
Mechanical Interaction of the Pericardium and Cardiac Function in the Normal and Hypertensive Rat Heart.
Front Physiol. 2022 May 2;13:878861. doi: 10.3389/fphys.2022.878861. eCollection 2022.
3
Multiscale Contrasts Between the Right and Left Ventricle Biomechanics in Healthy Adult Sheep and Translational Implications.
Front Bioeng Biotechnol. 2022 Apr 21;10:857638. doi: 10.3389/fbioe.2022.857638. eCollection 2022.
4
An image registration framework to estimate 3D myocardial strains from cine cardiac MRI in mice.
Funct Imaging Model Heart. 2021 Jun;12738:273-284. doi: 10.1007/978-3-030-78710-3_27. Epub 2021 Jun 18.
6
How hydrogel inclusions modulate the local mechanical response in early and fully formed post-infarcted myocardium.
Acta Biomater. 2020 Sep 15;114:296-306. doi: 10.1016/j.actbio.2020.07.046. Epub 2020 Jul 30.
7
On the in vivo systolic compressibility of left ventricular free wall myocardium in the normal and infarcted heart.
J Biomech. 2020 Jun 23;107:109767. doi: 10.1016/j.jbiomech.2020.109767. Epub 2020 Apr 5.
8
Insights into the passive mechanical behavior of left ventricular myocardium using a robust constitutive model based on full 3D kinematics.
J Mech Behav Biomed Mater. 2020 Mar;103:103508. doi: 10.1016/j.jmbbm.2019.103508. Epub 2019 Nov 2.
9
Three-dimensional myocardial strain correlates with murine left ventricular remodelling severity post-infarction.
J R Soc Interface. 2019 Nov 29;16(160):20190570. doi: 10.1098/rsif.2019.0570. Epub 2019 Nov 20.
10
Prognostic Implications of Global Longitudinal Strain by Feature-Tracking Cardiac Magnetic Resonance in ST-Elevation Myocardial Infarction.
Circ Cardiovasc Imaging. 2019 Nov;12(11):e009404. doi: 10.1161/CIRCIMAGING.119.009404. Epub 2019 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验