Computational Cardiovascular Bioengineering Laboratory, Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
Department of Molecular Cardiology, Texas Heart Institute, Houston, TX, USA.
Ann Biomed Eng. 2023 Apr;51(4):846-863. doi: 10.1007/s10439-022-03102-z. Epub 2022 Nov 17.
Myocardial infarction (MI) results in cardiac myocyte death and the formation of a fibrotic scar in the left ventricular free wall (LVFW). Following an acute MI, LVFW remodeling takes place consisting of several alterations in the structure and properties of cellular and extracellular components with a heterogeneous pattern across the LVFW. The normal function of the heart is strongly influenced by the passive and active biomechanical behavior of the LVFW, and progressive myocardial structural remodeling can have a detrimental effect on both diastolic and systolic functions of the LV leading to heart failure. Despite important advances in understanding LVFW passive remodeling in the setting of MI, heterogeneous remodeling in the LVFW active properties and its relationship to organ-level LV function remain understudied. To address these gaps, we developed high-fidelity finite-element (FE) rodent computational cardiac models (RCCMs) of MI using extensive datasets from MI rat hearts representing the heart remodeling from one-week (1-wk) to four-week (4-wk) post-MI timepoints. The rat-specific models (n = 2 for each timepoint) integrate detailed imaging data of the heart geometry, myocardial fiber architecture, and infarct zone determined using late gadolinium enhancement prior to terminal measurements. The computational models predicted a significantly higher level of active tension in remote myocardium in early post-MI hearts (1-wk post-MI) followed by a return to near the control level in late-stage MI (3- and 4-wk post-MI). The late-stage MI rats showed smaller myofiber ranges in the remote region and in-silico experiments using RCCMs suggested that the smaller fiber helicity is consistent with lower contractile forces needed to meet the measured ejection fractions in late-stage MI. In contrast, in-silico experiments predicted that collagen fiber transmural orientation in the infarct region has little influence on organ-level function. In addition, our MI RCCMs indicated that reduced and potentially positive circumferential strains in the infarct region at end-systole can be used to infer information about the time-varying properties of the infarct region. The detailed description of regional passive and active remodeling patterns can complement and enhance the traditional measures of LV anatomy and function that often lead to a gross and limited assessment of cardiac performance. The translation and implementation of our model in patient-specific organ-level simulations offer to advance the investigation of individualized prognosis and intervention for MI.
心肌梗死(MI)导致心肌细胞死亡,并在心室内壁(LVFW)形成纤维疤痕。在急性 MI 后,LVFW 重塑发生,包括 LVFW 内细胞和细胞外成分的结构和性质的几个改变,具有异质模式。LVFW 的被动和主动生物力学行为对心脏的正常功能有强烈影响,渐进性心肌结构重塑会对 LV 的舒张和收缩功能产生不利影响,导致心力衰竭。尽管在 MI 背景下对 LVFW 被动重塑有了重要的了解,但 LVFW 主动性质的异质重塑及其与器官水平 LV 功能的关系仍未得到充分研究。为了解决这些差距,我们使用代表 MI 后 1 周到 4 周时间点心脏重塑的 MI 大鼠心脏的大量数据集,开发了 MI 的高保真有限元(FE)啮齿动物计算心脏模型(RCCM)。大鼠特异性模型(每个时间点 n = 2)整合了心脏几何形状、心肌纤维结构和晚期钆增强确定的梗塞区的详细成像数据,用于终端测量之前。计算模型预测在早期 MI 心脏(1 周 MI 后)中,远程心肌的主动张力水平显著升高,随后在晚期 MI(3 周和 4 周 MI 后)中接近对照水平。晚期 MI 大鼠在远程区域的肌纤维范围较小,使用 RCCM 的体内实验表明,较小的纤维螺旋度与晚期 MI 中需要满足测量射血分数的较低收缩力一致。相反,体内实验预测梗塞区胶原纤维的跨壁取向对器官水平功能的影响很小。此外,我们的 MI RCCM 表明,在收缩末期梗塞区的减少和潜在的正圆周应变可以用于推断梗塞区时变特性的信息。区域被动和主动重塑模式的详细描述可以补充和增强传统的 LV 解剖和功能测量,这些测量通常导致对心脏功能的粗略和有限评估。我们的模型在患者特异性器官水平模拟中的翻译和实施,为 MI 的个体化预后和干预的研究提供了帮助。