Mukherjee Tanmay, Usman Muhammad, Mehdi Rana Raza, Mendiola Emilio, Ohayon Jacques, Lindquist Diana, Shah Dipan, Sadayappan Sakthivel, Pettigrew Roderic, Avazmohammadi Reza
Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
Savoie Mont-Blanc University, Polytech Annecy-Chambéry, Le Bourget du Lac, France.
bioRxiv. 2024 Aug 7:2024.08.05.606672. doi: 10.1101/2024.08.05.606672.
The quantification of cardiac strains as structural indices of cardiac function has a growing prevalence in clinical diagnosis. However, the highly heterogeneous four-dimensional (4D) cardiac motion challenges accurate "regional" strain quantification and leads to sizable differences in the estimated strains depending on the imaging modality and post-processing algorithm, limiting the translational potential of strains as incremental biomarkers of cardiac dysfunction. There remains a crucial need for a feasible benchmark that successfully replicates complex 4D cardiac kinematics to determine the reliability of strain calculation algorithms. In this study, we propose an in-silico heart phantom derived from finite element (FE) simulations to validate the quantification of 4D regional strains. First, as a proof-of-concept exercise, we created synthetic magnetic resonance (MR) images for a hollow thick-walled cylinder under pure torsion with an exact solution and demonstrated that "ground-truth" values can be recovered for the twist angle, which is also a key kinematic index in the heart. Next, we used mouse-specific FE simulations of cardiac kinematics to synthesize dynamic MR images by sampling various sectional planes of the left ventricle (LV). Strains were calculated using our recently developed non-rigid image registration (NRIR) framework in both problems. Moreover, we studied the effects of image quality on distorting regional strain calculations by conducting in-silico experiments for various LV configurations. Our studies offer a rigorous and feasible tool to standardize regional strain calculations to improve their clinical impact as incremental biomarkers.
将心脏应变作为心脏功能的结构指标进行量化在临床诊断中的应用日益广泛。然而,高度异质的四维(4D)心脏运动对准确的“局部”应变量化提出了挑战,并导致根据成像方式和后处理算法估计的应变存在相当大的差异,限制了应变作为心脏功能障碍增量生物标志物的转化潜力。迫切需要一个可行的基准来成功复制复杂的4D心脏运动学,以确定应变计算算法的可靠性。在本研究中,我们提出了一种基于有限元(FE)模拟的虚拟心脏模型,以验证4D局部应变的量化。首先,作为概念验证练习,我们为纯扭转下的空心厚壁圆柱体创建了合成磁共振(MR)图像,并给出了精确解,证明了可以恢复扭转角的“真实”值,扭转角也是心脏中的一个关键运动学指标。接下来,我们使用小鼠特异性的心脏运动学有限元模拟,通过对左心室(LV)的各个截面进行采样来合成动态MR图像。在这两个问题中,我们都使用了最近开发的非刚性图像配准(NRIR)框架来计算应变。此外,我们通过对各种LV构型进行虚拟实验,研究了图像质量对局部应变计算失真的影响。我们的研究提供了一个严格且可行的工具,用于规范局部应变计算,以提高其作为增量生物标志物的临床影响。