Giri Ashutosh, Karna Pravin, Hopkins Patrick E
Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States.
Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States.
J Phys Chem Lett. 2022 Dec 1;13(47):10918-10923. doi: 10.1021/acs.jpclett.2c03090. Epub 2022 Nov 17.
Extreme pressure conditions reveal fundamental insights into the physical properties of elemental metals that are otherwise not evident under ambient conditions. Herein, we use the density functional perturbation theory to demonstrate that the change in thermal conductivity as a result of large hydrostatic pressures at room temperature for aluminum is the largest of any known material. More specifically, in comparison to ambient conditions, we find that the change in thermal conductivity for aluminum is greater than the relative changes in thermal conductivities of diamond and cubic boron nitride combined, which are two of the most thermally conductive bulk materials known to date. We attribute this to the relatively larger increase in mean free paths and lifetimes of electrons in aluminum as a result of weaker electron-phonon coupling at higher pressures. Our work reveals direct insights into the exceptional electronic transport properties of pressurized aluminum and advances a broad paradigm for understanding thermal transport in metals under extreme pressure.
极端压力条件揭示了元素金属物理性质的基本见解,而这些见解在环境条件下并不明显。在此,我们使用密度泛函微扰理论来证明,室温下铝在大静水压力作用下热导率的变化是所有已知材料中最大的。更具体地说,与环境条件相比,我们发现铝的热导率变化大于金刚石和立方氮化硼热导率相对变化之和,而金刚石和立方氮化硼是迄今为止已知的两种热导率最高的块状材料。我们将此归因于在较高压力下,由于电子 - 声子耦合较弱,铝中电子的平均自由程和寿命相对增加较大。我们的工作揭示了对受压铝卓越电子输运性质的直接见解,并推进了一个广泛的范式,用于理解极端压力下金属中的热输运。