Departments of Physics, Applied Physics and Astronomy and.
Earth and Environmental Sciences, and.
Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8712-6. doi: 10.1073/pnas.1406721111. Epub 2014 Jun 2.
We present a combined first-principles and experimental study of the electrical resistivity in aluminum and copper samples under pressures up to 2 GPa. The calculations are based on first-principles density functional perturbation theory, whereas the experimental setup uses a solid media piston-cylinder apparatus at room temperature. We find that upon pressurizing each metal, the phonon spectra are blue-shifted and the net electron-phonon interaction is suppressed relative to the unstrained crystal. This reduction in electron-phonon scattering results in a decrease in the electrical resistivity under pressure, which is more pronounced for aluminum than for copper. We show that density functional perturbation theory can be used to accurately predict the pressure response of the electrical resistivity in these metals. This work demonstrates how the phonon spectra in metals can be engineered through pressure to achieve more attractive electrical properties.
我们呈现了一项关于在高达 2GPa 的压力下铝和铜样品电阻率的第一性原理和实验综合研究。计算基于第一性原理密度泛函微扰理论,而实验装置则在室温下使用固体介质活塞-圆筒装置。我们发现,在对每种金属加压时,声子谱都会蓝移,与未受应变的晶体相比,电子-声子相互作用被抑制。电子-声子散射的减少导致在压力下电阻率降低,对于铝来说比铜更为显著。我们表明,密度泛函微扰理论可以用于准确预测这些金属中电阻率对压力的响应。这项工作展示了如何通过压力来设计金属中的声子谱,以实现更具吸引力的电学性质。