National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Computational Design of Advanced Functional Materials, Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan.
Research Association of High-Throughput Design and Development for Advanced Functional Materials, Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan.
Sci Rep. 2022 Nov 17;12(1):19788. doi: 10.1038/s41598-022-23897-0.
It is highly desirable but difficult to understand how microscopic molecular details influence the macroscopic material properties, especially for soft materials with complex molecular architectures. In this study we focus on liquid crystal elastomers (LCEs) and aim at identifying the design variables of their molecular architectures that govern their macroscopic deformations. We apply the regression analysis using machine learning (ML) to a database containing the results of coarse grained molecular dynamics simulations of LCEs with various molecular architectures. The predictive performance of a surrogate model generated by the regression analysis is also tested. The database contains design variables for LCE molecular architectures, system and simulation conditions, and stress-strain curves for each LCE molecular system. Regression analysis is applied using the stress-strain curves as objective variables and the other factors as explanatory variables. The results reveal several descriptors governing the stress-strain curves. To test the predictive performance of the surrogate model, stress-strain curves are predicted for LCE molecular architectures that were not used in the ML scheme. The predicted curves capture the characteristics of the results obtained from molecular dynamics simulations. Therefore, the ML scheme has great potential to accelerate LCE material exploration by detecting the key design variables in the molecular architecture and predicting the LCE deformations.
了解微观分子细节如何影响宏观材料性能是非常理想的,但却很难做到,特别是对于具有复杂分子结构的软物质。在这项研究中,我们专注于液晶弹性体(LCE),并旨在确定控制其宏观变形的分子结构的设计变量。我们应用机器学习(ML)回归分析来处理一个包含各种分子结构的 LCE 粗粒度分子动力学模拟结果的数据库。我们还测试了回归分析生成的替代模型的预测性能。该数据库包含 LCE 分子结构、系统和模拟条件的设计变量,以及每个 LCE 分子系统的应力-应变曲线。回归分析使用应力-应变曲线作为目标变量,其他因素作为解释变量。结果揭示了几个控制应力-应变曲线的描述符。为了测试替代模型的预测性能,我们预测了未用于 ML 方案的 LCE 分子结构的应力-应变曲线。预测曲线捕捉到了分子动力学模拟结果的特征。因此,通过检测分子结构中的关键设计变量并预测 LCE 变形,ML 方案具有加速 LCE 材料探索的巨大潜力。