Suppr超能文献

聚合物信息学:机遇与挑战。

Polymer Informatics: Opportunities and Challenges.

作者信息

Audus Debra J, de Pablo Juan J

机构信息

Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899 USA.

The Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois, 60637 USA.

出版信息

ACS Macro Lett. 2017 Oct;6(10):1078-1082. doi: 10.1021/acsmacrolett.7b00228. Epub 2017 Sep 15.

Abstract

We are entering an era where large volumes of scientific data, coupled with algorithmic and computational advances, can reduce both the time and cost of developing new materials. This emerging field known as materials informatics has gained acceptance for a number of classes of materials, including metals and oxides. In the particular case of polymer science, however, there are important challenges that must be addressed before one can start to deploy advanced machine learning approaches for designing new materials. These challenges are primarily related to the manner in which polymeric systems and their properties are reported. In this viewpoint, we discuss the opportunities and challenges for making materials informatics as applied to polymers, or equivalently polymer informatics, a reality.

摘要

我们正在进入一个新时代,大量科学数据与算法和计算技术的进步相结合,可以减少开发新材料的时间和成本。这个新兴领域被称为材料信息学,已经在包括金属和氧化物在内的多种材料类别中得到认可。然而,在聚合物科学领域,在开始部署先进的机器学习方法来设计新材料之前,必须解决一些重要挑战。这些挑战主要与聚合物体系及其性能的报告方式有关。在本文观点中,我们讨论了将材料信息学应用于聚合物(即聚合物信息学)成为现实所面临的机遇和挑战。

相似文献

1
Polymer Informatics: Opportunities and Challenges.聚合物信息学:机遇与挑战。
ACS Macro Lett. 2017 Oct;6(10):1078-1082. doi: 10.1021/acsmacrolett.7b00228. Epub 2017 Sep 15.
6
PI1M: A Benchmark Database for Polymer Informatics.PI1M:高分子信息学基准数据库。
J Chem Inf Model. 2020 Oct 26;60(10):4684-4690. doi: 10.1021/acs.jcim.0c00726. Epub 2020 Oct 8.

引用本文的文献

3
Functional monomer design for synthetically accessible polymers.用于合成可及聚合物的功能性单体设计
Chem Sci. 2025 Feb 13;16(11):4755-4767. doi: 10.1039/d4sc08617a. eCollection 2025 Mar 12.
4
Machine Learning in Polymer Research.聚合物研究中的机器学习
Adv Mater. 2025 Mar;37(11):e2413695. doi: 10.1002/adma.202413695. Epub 2025 Feb 9.
5
Covalent integration of polymers and porous organic frameworks.聚合物与多孔有机框架的共价整合。
Front Chem. 2024 Dec 18;12:1502401. doi: 10.3389/fchem.2024.1502401. eCollection 2024.
10
Calculating Pairwise Similarity of Polymer Ensembles via Earth Mover's Distance.通过推土机距离计算聚合物集合的成对相似性。
ACS Polym Au. 2024 Jan 10;4(1):66-76. doi: 10.1021/acspolymersau.3c00029. eCollection 2024 Feb 14.

本文引用的文献

1
Discussion on "Aperiodic Copolymers".关于“非周期性共聚物”的讨论
ACS Macro Lett. 2016 Jan 19;5(1):1-3. doi: 10.1021/acsmacrolett.5b00758. Epub 2015 Dec 8.
8
PubChem Substance and Compound databases.美国国立医学图书馆化学物质数据库和化合物数据库。
Nucleic Acids Res. 2016 Jan 4;44(D1):D1202-13. doi: 10.1093/nar/gkv951. Epub 2015 Sep 22.
9
Aperiodic Copolymers.非周期性共聚物
ACS Macro Lett. 2014 Oct 21;3(10):1020-1023. doi: 10.1021/mz5004823. Epub 2014 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验