Physics, College of Creative Studies, University of California, Santa Barbara, Santa Barbara, California 93106-3080, USA.
Department of Physiology, University of Maryland, Baltimore, Maryland 21201, USA.
Phys Rev E. 2022 Oct;106(4-1):044402. doi: 10.1103/PhysRevE.106.044402.
We develop methods for investigating protein drift-diffusion dynamics in heterogeneous cell membranes and the roles played by geometry, diffusion, chemical kinetics, and phase separation. Our hybrid stochastic numerical methods combine discrete particle descriptions with continuum-level models for tracking the individual protein drift-diffusion dynamics when coupled to continuum fields. We show how our approaches can be used to investigate phenomena motivated by protein kinetics within dendritic spines. The spine geometry is hypothesized to play an important biological role regulating synaptic strength, protein kinetics, and self-assembly of clusters. We perform simulation studies for model spine geometries varying the neck size to investigate how phase-separation and protein organization is influenced by different shapes. We also show how our methods can be used to study the roles of geometry in reaction-diffusion systems including Turing instabilities. Our methods provide general approaches for investigating protein kinetics and drift-diffusion dynamics within curved membrane structures.
我们开发了用于研究异质细胞膜中蛋白质扩散动力学以及几何形状、扩散、化学动力学和相分离所起作用的方法。我们的混合随机数值方法将离散粒子描述与连续体水平模型相结合,用于跟踪与连续场耦合时单个蛋白质扩散动力学。我们展示了如何使用我们的方法来研究由树突棘内蛋白质动力学引发的现象。假设棘突几何形状在调节突触强度、蛋白质动力学和簇的自组装方面发挥着重要的生物学作用。我们针对不同颈部尺寸的模型棘突几何形状进行了模拟研究,以研究相分离和蛋白质组织如何受到不同形状的影响。我们还展示了如何使用我们的方法来研究几何形状在包括图灵不稳定性在内的反应扩散系统中的作用。我们的方法为研究弯曲膜结构内的蛋白质动力学和扩散动力学提供了通用方法。