Suppr超能文献

序贯单目图像引导的运动补偿在立体定向体部放疗(SBRT)治疗前列腺癌中的应用。

Sequential monoscopic image-guided motion compensation in tomotherapy stereotactic body radiotherapy (SBRT) for prostate cancer.

机构信息

Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA.

Accuray Incorporated, 1310 Chesapeake Terrace, Sunnyvale, California, USA.

出版信息

Med Phys. 2023 Jan;50(1):518-528. doi: 10.1002/mp.16112. Epub 2022 Dec 3.

Abstract

PURPOSE

To manage intra-fractional motions, recent developments in tomotherapy enable a unique capability of adjusting MLC/jaw to track the moving target based on the intra-fractional motions detected by sequential monoscopic imaging. In this study, we evaluated the effectiveness of motion compensation with a realistic imaging rate for prostate stereotactic body radiotherapy (SBRT). The obtained results will guide optimizing treatment parameters and image-guided radiation therapy (IGRT) in tomotherapy using this approach.

METHODS

Ten retrospective prostate cases with actual prostate motion curves previously recorded through the Calypso system were used in this study. Based on the recorded peak-to-peak motion, these cases represented either large (> 5 mm) or median (≤ 5 mm) intra-fractional prostate motions. All the cases were re-planned on tomotherapy using 35 Gy/5 fractions SBRT regimen and three different jaw settings of 1 cm static, 2.5 cm static, and 2.5 cm dynamic jaw. Two motion compensation methods were evaluated: a complete compensation that adjusted the jaw and MLC every 0.1 s (the same rate as the Calypso motion trace), and a realistic compensation that adjusted the jaw and MLC at an average imaging interval of 6 s from sequential monoscopic images. An in-house 4D dose calculation software was then applied to calculate the dosimetric outcomes from the original motion-free plan, the motion-contaminated plan, and the two abovementioned motion-compensated plans. During the process, various imaging rates were also simulated in one case with unusually large motions to quantify the impact of the KV-imaging rate on the effectiveness of motion compensation.

RESULTS

The effectiveness of motion compensation was evaluated based on the PTV coverage and OAR sparing. Without any motion-compensation, the PTV coverage (PTV V100%) of patients with large prostate motions decreased remarkably to 55%-82% when planning with the 1 cm jaw but to a less level of 67-94% with the 2.5 cm jaw. In contrast, motion compensation improved the PTV coverage (>92%) when combined with the 2.5 cm jaw, but less effective, around 75%-94%, with the 1 cm jaw. For OAR sparing, the bladder D1cc, bladder D10cc, and rectum D1cc all increased in the motion-contaminated plans. Motion compensation improved OAR sparing to the equivalent level of the original motion-free plans. For patients with median prostate motion, motion-induced degradation in PTV coverage was only observed when planning with the 1 cm jaw. After motion compensation, the PTV coverage improved to better than 94% for all three jaw settings. Additionally, the effectiveness of motion compensation depends on the imaging rate. Motion compensation with a typical rate of two KV images per gantry rotation effectively reduces motion-induced dosimetric uncertainties. However, a higher imaging rate is recommended when planning with a 1 cm jaw for patients with large motions.

CONCLUSION

Our results demonstrated that the performance of sequential monoscopic imaging-guided motion compensation on tomotherapy depends on the amplitude of intra-fractional prostate motion, the plan parameter settings, especially jaw setting, gantry rotation, and the imaging rate for motion compensation. Creating a patient-specific imaging guidance protocol is essential to balance the effectiveness of motion compensation and achievable imaging rate for intra-fractional motion tracking.

摘要

目的

为了管理分次内运动,调强治疗计划系统的最新进展使我们能够基于序列体层摄影术监测到的分次内运动,利用多叶准直器(MLC)/机架调整来跟踪移动目标。本研究旨在评估使用真实成像率进行前列腺立体定向体部放射治疗(SBRT)的运动补偿的效果。所得结果将为使用这种方法优化调强治疗计划系统参数和图像引导放射治疗(IGRT)提供指导。

方法

本研究使用了之前通过 Calypso 系统记录的实际前列腺运动曲线的 10 例回顾性前列腺病例。根据记录的峰峰值运动,这些病例代表了大(>5mm)或中值(≤5mm)分次内前列腺运动。所有病例均在 Tomotherapy 上使用 35Gy/5 次分割 SBRT 方案和 3 种不同的机架设置(1cm 静态、2.5cm 静态和 2.5cm 动态机架)重新计划。评估了两种运动补偿方法:一种是完全补偿,即每 0.1s 调整一次机架和 MLC(与 Calypso 运动轨迹的速率相同);另一种是现实补偿,即从序列体层摄影术图像以平均成像间隔 6s 调整机架和 MLC。然后使用内部的 4D 剂量计算软件计算原始无运动计划、运动污染计划和上述两种运动补偿计划的剂量学结果。在此过程中,为了量化千伏成像率对运动补偿效果的影响,还在一个运动幅度较大的病例中模拟了各种成像率。

结果

以 PTV 覆盖和 OAR 保护为指标评估运动补偿效果。在没有任何运动补偿的情况下,大前列腺运动患者的 PTV 覆盖率(PTV V100%)显著降低,当使用 1cm 机架时,降至 55%-82%,而使用 2.5cm 机架时,降至 67-94%。相比之下,当与 2.5cm 机架结合使用时,运动补偿可以提高 PTV 覆盖率(>92%),但当与 1cm 机架结合使用时,效果较差,约为 75%-94%。对于 OAR 保护,膀胱 D1cc、膀胱 D10cc 和直肠 D1cc 在运动污染计划中均增加。运动补偿可将 OAR 保护改善到与原始无运动计划相当的水平。对于中值前列腺运动的患者,仅在使用 1cm 机架计划时观察到 PTV 覆盖率的运动诱导降低。运动补偿后,所有三种机架设置的 PTV 覆盖率均提高到>94%。此外,运动补偿效果取决于成像率。典型的每机架旋转两次千伏成像的运动补偿有效地降低了运动引起的剂量不确定性。然而,对于运动幅度较大的患者,建议在使用 1cm 机架时采用更高的成像率。

结论

本研究结果表明,调强治疗计划系统序列体层摄影术引导的运动补偿性能取决于分次内前列腺运动的幅度、计划参数设置,特别是机架设置、机架旋转和运动补偿的成像率。为了平衡运动补偿的有效性和分次内运动跟踪的可实现成像率,制定患者特异性的成像指导方案至关重要。

相似文献

2
Assessment of HDR brachytherapy-replicating prostate radiotherapy planning for tomotherapy, cyberknife and VMAT.
Med Dosim. 2022;47(1):61-69. doi: 10.1016/j.meddos.2021.08.003. Epub 2021 Sep 20.
3
Single institution's dosimetry and IGRT analysis of prostate SBRT.
Radiat Oncol. 2013 Sep 13;8:215. doi: 10.1186/1748-717X-8-215.
10
Target miss using PTV-based IMRT compared to robust optimization via coverage probability concept in prostate cancer.
Acta Oncol. 2020 Aug;59(8):911-917. doi: 10.1080/0284186X.2020.1760349. Epub 2020 May 21.

本文引用的文献

1
A first report of tumour-tracking radiotherapy with helical tomotherapy for lung and liver tumours: A double case report.
SAGE Open Med Case Rep. 2021 Jun 12;9:2050313X211023688. doi: 10.1177/2050313X211023688. eCollection 2021.
2
Clinical Implementation and Initial Experience of Real-Time Motion Tracking With Jaws and Multileaf Collimator During Helical Tomotherapy Delivery.
Pract Radiat Oncol. 2021 Sep-Oct;11(5):e486-e495. doi: 10.1016/j.prro.2021.01.010. Epub 2021 Feb 10.
3
Single-fraction prostate stereotactic body radiotherapy: Dose reconstruction with electromagnetic intrafraction motion tracking.
Radiother Oncol. 2021 Mar;156:145-152. doi: 10.1016/j.radonc.2020.12.013. Epub 2020 Dec 11.
4
Evaluation of radixact motion synchrony for 3D respiratory motion: Modeling accuracy and dosimetric fidelity.
J Appl Clin Med Phys. 2020 Sep;21(9):96-106. doi: 10.1002/acm2.12978. Epub 2020 Jul 21.
6
Evaluation of the target dose coverage of stereotactic body radiotherapy for lung cancer using helical tomotherapy: A dynamic phantom study.
Rep Pract Oncol Radiother. 2020 Mar-Apr;25(2):200-205. doi: 10.1016/j.rpor.2020.01.001. Epub 2020 Jan 14.
7
Feasibility of real-time motion management with helical tomotherapy.
Med Phys. 2018 Apr;45(4):1329-1337. doi: 10.1002/mp.12791. Epub 2018 Feb 23.
8
Evaluation of TomoTherapy dose calculations with intrafractional motion and motion compensation.
Med Phys. 2018 Jan;45(1):18-28. doi: 10.1002/mp.12655. Epub 2017 Dec 3.
9
Multileaf Collimator Tracking Improves Dose Delivery for Prostate Cancer Radiation Therapy: Results of the First Clinical Trial.
Int J Radiat Oncol Biol Phys. 2015 Aug 1;92(5):1141-1147. doi: 10.1016/j.ijrobp.2015.04.024. Epub 2015 Apr 17.
10
Accelerated tomotherapy delivery with TomoEdge technique.
J Appl Clin Med Phys. 2015 Mar 8;16(2):4964. doi: 10.1120/jacmp.v16i2.4964.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验