Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan.
Department of Mathematical Sciences, University of Massachusetts Lowell, Lowell, Massachusetts.
Biophys J. 2023 Jun 6;122(11):2068-2081. doi: 10.1016/j.bpj.2022.11.026. Epub 2022 Nov 17.
Actin networks polymerize and depolymerize to construct highly organized structures, thereby endowing the mechanical phenotypes found in a cell. It is generally believed that the amount of filamentous actin and actin network architecture determine cytoplasmic viscoelasticity of the whole cell. However, the intrinsic complexity of a cell and the presence of endogenous cellular components make it difficult to study the differential roles of distinct actin networks in regulating cell mechanics. Here, we model a cell by using giant unilamellar vesicles (GUVs) encapsulating actin filaments and networks assembled by various actin cross-linker proteins. Perturbation of these cytoskeletal vesicles using alternating current electric fields revealed that deformability depends on actin network architecture. While actin-free vesicles exhibited large electromechanical deformations, deformations of GUVs encapsulating actin filaments were significantly dampened. The suppression of electrodeformation of actin-GUVs can be similarly recapitulated by using aqueous poly(ethylene glycol) 8000 solutions at different concentrations to modulate solution viscoelasticity. Furthermore, networks cross-linked by alpha actinin resulted in decreased GUV deformability compared with actin-filament-encapsulating GUVs, and membrane-associated actin networks, through the formation of the dendritic actin cortex, greatly dampened electrodeformation of GUVs. These results highlight that the organization of actin networks regulates the mechanics of GUVs and shed insights into the origin of differential deformability of cells.
肌动蛋白网络的聚合和去聚合作用构建了高度有序的结构,从而赋予了细胞中存在的机械表型。人们普遍认为,丝状肌动蛋白的含量和肌动蛋白网络结构决定了整个细胞的细胞质粘弹性。然而,细胞的内在复杂性和内源性细胞成分的存在使得研究不同肌动蛋白网络在调节细胞力学方面的差异作用变得困难。在这里,我们使用包裹肌动蛋白丝和由各种肌动蛋白交联蛋白组装的网络的巨大单室囊泡(GUV)来模拟细胞。使用交流电电场对这些细胞骨架囊泡进行扰动,结果表明变形性取决于肌动蛋白网络结构。虽然不含肌动蛋白的囊泡表现出较大的机电变形,但包裹肌动蛋白丝的 GUV 的变形明显减弱。通过使用不同浓度的水性聚乙二醇 8000 溶液来调节溶液粘弹性,同样可以模拟肌动蛋白-GUV 的电极变形的抑制。此外,与包裹肌动蛋白丝的 GUV 相比,交联蛋白肌动蛋白结合蛋白交联的网络导致 GUV 变形性降低,并且通过形成树突状肌动蛋白皮质,膜相关的肌动蛋白网络大大抑制了 GUV 的电极变形。这些结果强调了肌动蛋白网络的组织调节 GUV 的力学特性,并深入了解细胞不同变形性的起源。
Biophys J. 2023-6-6
Biochim Biophys Acta Biomembr. 2022-5-1
Cytoskeleton (Hoboken). 2024-8
Sci Rep. 2019-5-31
Biophys J. 2023-6-6
Biochem Soc Trans. 2022-10-31
Cytoskeleton (Hoboken). 2024-12
Trends Biochem Sci. 2024-5
Cytoskeleton (Hoboken). 2024-8
Adv Sci (Weinh). 2024-2
Angew Chem Int Ed Engl. 2023-10-9
Biophys J. 2023-6-6
iScience. 2022-4-12
Nat Commun. 2022-3-10
J Vis Exp. 2021-11-10
Electrophoresis. 2021-10
Macromolecules. 2021-4-27
Annu Rev Biophys. 2021-5-6
Soft Matter. 2007-6-19