文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过肌动蛋白网络结构对 GUV 力学的差异调节。

Differential regulation of GUV mechanics via actin network architectures.

机构信息

Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan.

Department of Mathematical Sciences, University of Massachusetts Lowell, Lowell, Massachusetts.

出版信息

Biophys J. 2023 Jun 6;122(11):2068-2081. doi: 10.1016/j.bpj.2022.11.026. Epub 2022 Nov 17.


DOI:10.1016/j.bpj.2022.11.026
PMID:36397672
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10257087/
Abstract

Actin networks polymerize and depolymerize to construct highly organized structures, thereby endowing the mechanical phenotypes found in a cell. It is generally believed that the amount of filamentous actin and actin network architecture determine cytoplasmic viscoelasticity of the whole cell. However, the intrinsic complexity of a cell and the presence of endogenous cellular components make it difficult to study the differential roles of distinct actin networks in regulating cell mechanics. Here, we model a cell by using giant unilamellar vesicles (GUVs) encapsulating actin filaments and networks assembled by various actin cross-linker proteins. Perturbation of these cytoskeletal vesicles using alternating current electric fields revealed that deformability depends on actin network architecture. While actin-free vesicles exhibited large electromechanical deformations, deformations of GUVs encapsulating actin filaments were significantly dampened. The suppression of electrodeformation of actin-GUVs can be similarly recapitulated by using aqueous poly(ethylene glycol) 8000 solutions at different concentrations to modulate solution viscoelasticity. Furthermore, networks cross-linked by alpha actinin resulted in decreased GUV deformability compared with actin-filament-encapsulating GUVs, and membrane-associated actin networks, through the formation of the dendritic actin cortex, greatly dampened electrodeformation of GUVs. These results highlight that the organization of actin networks regulates the mechanics of GUVs and shed insights into the origin of differential deformability of cells.

摘要

肌动蛋白网络的聚合和去聚合作用构建了高度有序的结构,从而赋予了细胞中存在的机械表型。人们普遍认为,丝状肌动蛋白的含量和肌动蛋白网络结构决定了整个细胞的细胞质粘弹性。然而,细胞的内在复杂性和内源性细胞成分的存在使得研究不同肌动蛋白网络在调节细胞力学方面的差异作用变得困难。在这里,我们使用包裹肌动蛋白丝和由各种肌动蛋白交联蛋白组装的网络的巨大单室囊泡(GUV)来模拟细胞。使用交流电电场对这些细胞骨架囊泡进行扰动,结果表明变形性取决于肌动蛋白网络结构。虽然不含肌动蛋白的囊泡表现出较大的机电变形,但包裹肌动蛋白丝的 GUV 的变形明显减弱。通过使用不同浓度的水性聚乙二醇 8000 溶液来调节溶液粘弹性,同样可以模拟肌动蛋白-GUV 的电极变形的抑制。此外,与包裹肌动蛋白丝的 GUV 相比,交联蛋白肌动蛋白结合蛋白交联的网络导致 GUV 变形性降低,并且通过形成树突状肌动蛋白皮质,膜相关的肌动蛋白网络大大抑制了 GUV 的电极变形。这些结果强调了肌动蛋白网络的组织调节 GUV 的力学特性,并深入了解细胞不同变形性的起源。

相似文献

[1]
Differential regulation of GUV mechanics via actin network architectures.

Biophys J. 2023-6-6

[2]
Membrane localization of actin filaments stabilizes giant unilamellar vesicles against external deforming forces.

Eur J Cell Biol. 2024-6

[3]
Actin protein inside DMPC GUVs and its mechanical response to AC electric fields.

Biochim Biophys Acta Biomembr. 2022-5-1

[4]
Rearrangement of GUV-confined actin networks in response to micropipette aspiration.

Cytoskeleton (Hoboken). 2024-8

[5]
Response of an actin network in vesicles under electric pulses.

Sci Rep. 2019-5-31

[6]
Branched actin cortices reconstituted in vesicles sense membrane curvature.

Biophys J. 2023-6-6

[7]
Actin crosslinker competition and sorting drive emergent GUV size-dependent actin network architecture.

Commun Biol. 2021-9-28

[8]
Fascin-induced actin protrusions are suppressed by dendritic networks in giant unilamellar vesicles.

Mol Biol Cell. 2021-8-19

[9]
Studying actin-induced cell shape changes using Giant Unilamellar Vesicles and reconstituted actin networks.

Biochem Soc Trans. 2022-10-31

[10]
In Vitro Reconstitution of the Actin Cytoskeleton Inside Giant Unilamellar Vesicles.

J Vis Exp. 2022-8-25

引用本文的文献

[1]
Distinct Network Morphologies from In Situ Polymerization of Microtubules in Giant Polymer-Lipid Hybrid Vesicles.

Adv Biol (Weinh). 2025-5

[2]
Challenges in observing transcription-translation for bottom-up synthetic biology.

QRB Discov. 2025-1-3

[3]
Synthetic control of actin polymerization and symmetry breaking in active protocells.

Sci Adv. 2024-6-14

[4]
Benefits and challenges of reconstituting the actin cortex.

Cytoskeleton (Hoboken). 2024-12

[5]
Artificial cells for in vivo biomedical applications through red blood cell biomimicry.

Nat Commun. 2024-3-20

[6]
Protein-membrane interactions: sensing and generating curvature.

Trends Biochem Sci. 2024-5

[7]
Rearrangement of GUV-confined actin networks in response to micropipette aspiration.

Cytoskeleton (Hoboken). 2024-8

[8]
Synthetic Cells Revisited: Artificial Cells Construction Using Polymeric Building Blocks.

Adv Sci (Weinh). 2024-2

[9]
Hybrid Vesicles Enable Mechano-Responsive Hydrogel Degradation.

Angew Chem Int Ed Engl. 2023-10-9

[10]
Membranes in focus.

Biophys J. 2023-6-6

本文引用的文献

[1]
Encapsulated actomyosin patterns drive cell-like membrane shape changes.

iScience. 2022-4-12

[2]
Author Correction: Reconstitution of contractile actomyosin rings in vesicles.

Nat Commun. 2022-3-10

[3]
Rapid Encapsulation of Reconstituted Cytoskeleton Inside Giant Unilamellar Vesicles.

J Vis Exp. 2021-11-10

[4]
Actin crosslinker competition and sorting drive emergent GUV size-dependent actin network architecture.

Commun Biol. 2021-9-28

[5]
Electromechanical characterization of biomimetic membranes using electrodeformation of vesicles.

Electrophoresis. 2021-10

[6]
Fascin-induced actin protrusions are suppressed by dendritic networks in giant unilamellar vesicles.

Mol Biol Cell. 2021-8-19

[7]
Effect of Chain Polydispersity on the Elasticity of Disordered Polymer Networks.

Macromolecules. 2021-4-27

[8]
Protein Reconstitution Inside Giant Unilamellar Vesicles.

Annu Rev Biophys. 2021-5-6

[9]
Confinement Geometry Tunes Fascin-Actin Bundle Structures and Consequently the Shape of a Lipid Bilayer Vesicle.

Front Mol Biosci. 2020-11-9

[10]
Giant vesicles in electric fields.

Soft Matter. 2007-6-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索