Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
Biophys J. 2023 Jun 6;122(11):2311-2324. doi: 10.1016/j.bpj.2023.02.018. Epub 2023 Feb 17.
The actin cortex is a complex cytoskeletal machinery that drives and responds to changes in cell shape. It must generate or adapt to plasma membrane curvature to facilitate diverse functions such as cell division, migration, and phagocytosis. Due to the complex molecular makeup of the actin cortex, it remains unclear whether actin networks are inherently able to sense and generate membrane curvature, or whether they rely on their diverse binding partners to accomplish this. Here, we show that curvature sensing is an inherent capability of branched actin networks nucleated by Arp2/3 and VCA. We develop a robust method to encapsulate actin inside giant unilamellar vesicles (GUVs) and assemble an actin cortex at the inner surface of the GUV membrane. We show that actin forms a uniform and thin cortical layer when present at high concentration and distinct patches associated with negative membrane curvature at low concentration. Serendipitously, we find that the GUV production method also produces dumbbell-shaped GUVs, which we explain using mathematical modeling in terms of membrane hemifusion of nested GUVs. We find that branched actin networks preferentially assemble at the neck of the dumbbells, which possess a micrometer-range convex curvature comparable with the curvature of the actin patches found in spherical GUVs. Minimal branched actin networks can thus sense membrane curvature, which may help mammalian cells to robustly recruit actin to curved membranes to facilitate diverse cellular functions such as cytokinesis and migration.
肌动蛋白皮层是一种复杂的细胞骨架机制,它驱动并响应细胞形状的变化。它必须产生或适应质膜曲率,以促进细胞分裂、迁移和吞噬等多种功能。由于肌动蛋白皮层的复杂分子组成,目前尚不清楚肌动蛋白网络是否能够固有地感知和产生膜曲率,或者它们是否依赖于其多样化的结合伴侣来实现这一目标。在这里,我们表明分支肌动蛋白网络由 Arp2/3 和 VCA 核化,具有曲率感应能力。我们开发了一种强大的方法,可以将肌动蛋白封装在巨大的单层囊泡(GUV)中,并在 GUV 膜的内表面组装肌动蛋白皮层。我们表明,当肌动蛋白浓度较高时,它会形成均匀且薄的皮层层,而当浓度较低时,会与负膜曲率相关的明显斑块。偶然的是,我们发现 GUV 的产生方法还会产生哑铃形 GUV,我们用嵌套 GUV 的膜半融合的数学模型来解释这一现象。我们发现分支肌动蛋白网络优先在哑铃的颈部组装,哑铃颈部具有与球形 GUV 中发现的肌动蛋白斑块相当的微米级凸曲率。因此,最小的分支肌动蛋白网络可以感知膜曲率,这可能有助于哺乳动物细胞将肌动蛋白有效地募集到弯曲的膜上,以促进细胞分裂和迁移等多种细胞功能。