Kheirkhah Niusha, Dempsey Sergio, Sadeghi-Naini Ali, Samani Abbas
School of Biomedical Engineering, Western University, London, Ontario, Canada.
Department of Electrical Engineering and Computer Science, York University, Toronto, Ontario, Canada.
Med Phys. 2023 Apr;50(4):2176-2194. doi: 10.1002/mp.16110. Epub 2022 Dec 8.
Most cancers are associated with biological and structural changes that lead to tissue stiffening. Therefore, imaging tissue stiffness using quasi-static ultrasound elastography (USE) can potentially be effective in cancer diagnosis. USE techniques developed for stiffness image reconstruction use noisy displacement data to obtain the stiffness images. In this study, we propose a technique to substantially improve the accuracy of the displacement data computed through ultrasound tissue motion tracking techniques, especially in the lateral direction.
The proposed technique uses mathematical constraints derived from fundamental tissue mechanics principles to regularize displacement and strain fields obtained using Global Ultrasound Elastography (GLUE) and Second-Order Ultrasound Elastography (SOUL) methods. The principles include a novel technique to enforce (1) tissue incompressibility using 3D Boussinesq model and (2) deformation compatibility using the compatibility differential equation. The technique was validated thoroughly using metrics pertaining to Signal-to-Noise-Ratio (SNR), Contrast-to-Noise-Ratio (CNR) and Normalized Cross Correlation (NCC) for four tissue-mimicking phantom models and two clinical breast ultrasound elastography cases.
The results show substantial improvement in the displacement and strain images generated using the proposed technique. The tissue-mimicking phantom study results indicate that the proposed method is superior in improving image quality compared to the GLUE and SOUL techniques as it shows an average axial strain SNR and CNR improvement of 44% and 63%, and lateral strain SNR and CNR improvement of 130% and 435%, respectively. The results of the phantom study also indicate higher accuracy of displacement images obtained using the proposed technique, including improvement ranges of 7-84% and 26-140% for axial and lateral displacement images, respectively. For the clinical cases, the results indicate average improvement of 48% and 64% in SNR and CNR, respectively, in the axial strain images, and average improvement of 40% and 41% in SNR and CNR, respectively, in the lateral strain images.
The proposed method is very effective in producing improved estimate of tissue displacement and strain images, especially with the lateral displacement and strain where the improvement is highly remarkable. While the method shows promise for clinical applications, further investigation is necessary for rigorous assessment of the method's performance in the clinic.
大多数癌症都与导致组织变硬的生物学和结构变化有关。因此,使用准静态超声弹性成像(USE)对组织硬度进行成像在癌症诊断中可能会有效。为刚度图像重建开发的USE技术使用有噪声的位移数据来获取刚度图像。在本研究中,我们提出了一种技术,可大幅提高通过超声组织运动跟踪技术计算得到的位移数据的准确性,尤其是在横向方向上。
所提出的技术使用从基本组织力学原理推导出来的数学约束,对使用全局超声弹性成像(GLUE)和二阶超声弹性成像(SOUL)方法获得的位移和应变场进行正则化。这些原理包括一种新颖的技术,用于(1)使用三维布辛涅斯克模型强制实现组织不可压缩性,以及(2)使用相容性微分方程实现变形相容性。使用与四个仿组织体模模型和两个临床乳腺超声弹性成像病例的信噪比(SNR)、对比噪声比(CNR)和归一化互相关(NCC)相关的指标,对该技术进行了全面验证。
结果表明,使用所提出的技术生成的位移和应变图像有显著改善。仿组织体模研究结果表明,与GLUE和SOUL技术相比,所提出的方法在改善图像质量方面更具优势,因为它显示轴向应变SNR和CNR平均分别提高了44%和63%,横向应变SNR和CNR分别提高了130%和435%。体模研究结果还表明,使用所提出的技术获得的位移图像具有更高的准确性,轴向和横向位移图像的改善范围分别为7 - 84%和26 - 140%。对于临床病例,结果表明轴向应变图像的SNR和CNR平均分别提高了48%和64%,横向应变图像的SNR和CNR平均分别提高了40%和41%。
所提出的方法在生成改进的组织位移和应变图像估计方面非常有效,特别是在横向位移和应变方面,改善非常显著。虽然该方法在临床应用方面显示出前景,但仍需要进一步研究以严格评估该方法在临床中的性能。