Suppr超能文献

生理和转录组学研究揭示了硒纳米颗粒介导的砷(III)胁迫解毒机制,该机制涉及对大豆根中抗氧化剂、金属转运蛋白和转录因子的调控。

Physiological and transcriptomic study reveal SeNPs-mediated AsIII stress detoxification mechanisms involved modulation of antioxidants, metal transporters, and transcription factors in Glycine max L. (Merr.) roots.

作者信息

Zeeshan Muhammad, Hu Yu Xin, Guo Xiao Hong, Sun Chen Yu, Salam Abdul, Ahmad Shakeel, Muhammad Ihsan, Nasar Jamal, Jahan Mohammad Shah, Fahad Shah, Zhou Xun Bo

机构信息

Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China; Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China; Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China.

Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China.

出版信息

Environ Pollut. 2023 Jan 15;317:120637. doi: 10.1016/j.envpol.2022.120637. Epub 2022 Nov 16.

Abstract

Physiological changes and genome-wide alteration in gene expression were performed in soybean (Glycine max [L.] Merr.) roots exposed to AsⅢ (25 μmol/L) alone and supplemented with selenium nanoparticles (SeNPs) at the concentration of 10 and 25 μmol/L at the V2 growth stage. Excessive arsenic in the root zone poses a potential threat to soybean yield, particularly to roots, due to the limited translocation of AsIII from root to shoot in the case of soybean. We hypothesized that SeNPs can relieve AsⅢ toxicity to soybean root by reducing the AsⅢ uptake and regulating the internal tolerance mechanism of the plants. Results accomplished that SeNPs had positive impact on soybean dry weight and roots parameters under AsⅢ stress. Then, we further evaluated physiological indexes, whole genome transcriptomic analysis and quantitative real-time PCR to elucidate the underlying mechanism of AsⅢ tolerance under SeNPs supplementation. Under the condition of AsⅢ-stress, SeNPs exposure significantly reduced the electrolyte leakage, O, HO and MDA accumulation while increasing the antioxidants level. The RNA-seq dataset revealed total of 5819 up and 7231 down expressed DEGs across all libraries. The number of exclusively regulated genes were higher under As + SeNP10 (4909) treatment than in the AsⅢ-alone (4830) and As + SeNP25 (3311) treatments. The KEGG and GO analyses revealed that stress responsive DEGs such as glutathione S-transferase, glutathione peroxidase, ascorbate, glutaredoxin, thioredoxin, and phytochelatins synthase are responsible for AsⅢ tolerance under the SeNPs supplementation. Similarly, sulfate transporter, and ABC transporters (ATP-binding cassettes) expression were induced, and aquaporin channels related DEGs expression were reduced under SeNPs application in AsⅢ exposure condition. Furthermore, the expression of molecular chaperones (HSP) and transcription factors (MYB, bZIP, bHLH, and HSFs) were increased in SeNPs treatment groups. These results provide vital information of AsⅢ tolerance mechanism in response to SeNPs in soybean. We suggest that functional characterization of these genes will help us learn more about the SeNPs responsive arsenic tolerance mechanism in soybean.

摘要

在大豆(Glycine max [L.] Merr.)V2生长阶段,对单独暴露于25 μmol/L AsⅢ以及添加浓度为10 μmol/L和25 μmol/L硒纳米颗粒(SeNPs)的大豆根系进行了生理变化和全基因组基因表达改变的研究。由于大豆中AsⅢ从根向地上部的转运有限,根区过量的砷对大豆产量,尤其是对根系构成潜在威胁。我们假设SeNPs可以通过减少AsⅢ的吸收和调节植物的内部耐受机制来减轻AsⅢ对大豆根的毒性。结果表明,在AsⅢ胁迫下,SeNPs对大豆干重和根系参数有积极影响。然后,我们进一步评估了生理指标、全基因组转录组分析和定量实时PCR,以阐明在添加SeNPs情况下AsⅢ耐受的潜在机制。在AsⅢ胁迫条件下,暴露于SeNPs显著降低了电解质渗漏、O、H₂O₂和MDA积累,同时提高了抗氧化剂水平。RNA测序数据集显示,所有文库中共有5819个上调和7231个下调的差异表达基因(DEGs)。在As + SeNP10(4909)处理下,专门调控的基因数量高于单独AsⅢ(4830)和As + SeNP25(3311)处理。KEGG和GO分析表明,在添加SeNPs的情况下,谷胱甘肽S - 转移酶、谷胱甘肽过氧化物酶、抗坏血酸、谷氧还蛋白、硫氧还蛋白和植物螯合肽合酶等应激响应DEGs负责AsⅢ耐受。同样,在AsⅢ暴露条件下,施用SeNPs诱导了硫酸盐转运蛋白和ABC转运蛋白(ATP结合盒)的表达,并降低了水通道蛋白通道相关DEGs的表达。此外,在SeNPs处理组中分子伴侣(HSP)和转录因子(MYB、bZIP、bHLH和HSFs)的表达增加。这些结果提供了大豆中AsⅢ对SeNPs耐受机制的重要信息。我们建议对这些基因进行功能表征将有助于我们更多地了解大豆中SeNPs响应的砷耐受机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验