Leth Larsen Matthew Helmi, Dahl Frederik, Hansen Lars P, Barton Bastian, Kisielowski Christian, Helveg Stig, Winther Ole, Hansen Thomas W, Schiøtz Jakob
Computational Atomic-scale Materials Design (CAMD), Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
Topsoe A/S, Haldor Topsøes Allé 1, DK-2800 Kgs. Lyngby, Denmark.
Ultramicroscopy. 2023 Jan;243:113641. doi: 10.1016/j.ultramic.2022.113641. Epub 2022 Nov 4.
Reconstruction of the exit wave function is an important route to interpreting high-resolution transmission electron microscopy (HRTEM) images. Here we demonstrate that convolutional neural networks can be used to reconstruct the exit wave from a short focal series of HRTEM images, with a fidelity comparable to conventional exit wave reconstruction. We use a fully convolutional neural network based on the U-Net architecture, and demonstrate that we can train it on simulated exit waves and simulated HRTEM images of graphene-supported molybdenum disulphide (an industrial desulfurization catalyst). We then apply the trained network to analyse experimentally obtained images from similar samples, and obtain exit waves that clearly show the atomically resolved structure of both the MoS nanoparticles and the graphene support. We also show that it is possible to successfully train the neural networks to reconstruct exit waves for 3400 different two-dimensional materials taken from the Computational 2D Materials Database of known and proposed two-dimensional materials.
出射波函数的重建是解释高分辨率透射电子显微镜(HRTEM)图像的重要途径。在此我们证明,卷积神经网络可用于从HRTEM图像的短焦系列重建出射波,其保真度与传统出射波重建相当。我们使用基于U-Net架构的全卷积神经网络,并证明可以在模拟出射波和石墨烯支撑的二硫化钼(一种工业脱硫催化剂)的模拟HRTEM图像上对其进行训练。然后,我们将训练好的网络应用于分析从类似样品中实验获得的图像,并获得出射波,这些出射波清晰地显示了MoS纳米颗粒和石墨烯载体的原子分辨结构。我们还表明,成功训练神经网络以重建来自已知和提议的二维材料的计算二维材料数据库中的3400种不同二维材料的出射波是可能的。